Skip to main content Accessibility help

Symplectic cobordisms and the strong Weinstein conjecture



We study holomorphic spheres in certain symplectic cobordisms and derive information about periodic Reeb orbits in the concave end of these cobordisms from the non-compactness of the relevant moduli spaces. We use this to confirm the strong Weinstein conjecture (predicting the existence of null-homologous Reeb links) for various higher-dimensional contact manifolds, including contact type hypersurfaces in subcritical Stein manifolds and in some cotangent bundles. The quantitative character of this result leads to the definition of a symplectic capacity.



Hide All
[1]Abbas, C., Cieliebak, K. and Hofer, H.The Weinstein conjecture for planar contact structures in dimension three. Comment. Math. Helv. 80 (2005), 771793.
[2]Albers, P., Bramham, B. and Wendl, C.On nonseparating contact hypersurfaces in symplectic 4-manifolds. Algebr. Geom. Topol. 10 (2010), 697737.
[3]Albers, P. and Hofer, H.On the Weinstein conjecture in higher dimensions. Comment. Math. Helv. 84 (2009), 429436.
[4]Andenmatten, M. The Weinstein conjecture and holomorphic curves in higher dimensions. Ph.D. Thesis, New York University (1999).
[5]Bourgeois, F., Eliashberg, Ya., Hofer, H., Wysocki, K. and Zehnder, E.Compactness results in symplectic field theory. Geom. Topol. 7 (2003), 799888.
[6]Cieliebak, K. Subcritical Stein manifolds are split. preprint (2002), arXiv: math/0204351.
[7]Cieliebak, K. and Eliashberg, Ya.From Stein to Weinstein and Back – Symplectic Geometry of Affine Complex Manifolds, in preparation.
[8]Cieliebak, K., Hofer, H., Latschev, J. and Schlenk, F.Quantitative symplectic geometry. Dynamics, Ergodic Theory and Geometry. Math. Sci. Res. Inst. Publ. 54 (Cambridge University Press, 2007), 144.
[9]Cieliebak, K. and Mohnke, K.Symplectic hypersurfaces and transversality in Gromov–Witten theory. J. Symplectic Geom. 5 (2007), 281356.
[10]Dörner, M. Planar contact structures, Giroux torsion and the Weinstein conjecture. Diplomarbeit, Universität zu Köln (2011).
[11]Ekeland, I. and Hofer, H.Capacités symplectiques. C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 3740.
[12]Eliashberg, Ya. and Gromov, M.Convex symplectic manifolds. Several Complex Variables and Complex Geometry (Santa Cruz, CA, 1989). Proc. Sympos. Pure Math. 52, part 2 (American Mathematical Society, Providence, RI, 1991), 135162.
[13]Etnyre, J. B.Planar open book decompositions and contact structures. Int. Math. Res. Not. 2004, 42554267.
[14]Floer, A., Hofer, H. and Viterbo, C.The Weinstein conjecture in $P\times\C^l$. Math. Z. 203 (1990), 469482.
[15]Frauenfelder, U., Ginzburg, V. and Schlenk, F.Energy capacity inequalities via an action selector. Geometry, Spectral Theory, Groups and Dynamics. Contemp. Math. 387 (American Mathematical Society, Providence, RI, 2005), 129152.
[16]Frauenfelder, U. and Schlenk, F.Hamiltonian dynamics on convex symplectic manifolds. Israel J. Math. 159 (2007), 156.
[17]Geiges, H.An Introduction to Contact Topology. Cambridge Stud. Adv. Math. 109 (Cambridge University Press, 2008).
[18]Geiges, H. and Zehmisch, K. How to recognise a 4-ball when you see one. preprint (2011), arXiv: 1104.1543.
[19]Grauert, H.On Levi's problem and the imbedding of real-analytic manifolds. Ann. of Math. (2) 68 (1958), 460472.
[20]Gromov, M.Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82 (1985), 307347.
[21]Hofer, H.Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent. Math. 114 (1993), 515563.
[22]Hofer, H. and Viterbo, C.The Weinstein conjecture in cotangent bundles and related results. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 411445.
[23]Hofer, H. and Zehnder, E.Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser Adv. Texts - Basler Lehrbücher (Birkhäuser Verlag, Basel, 1994).
[24]Jung, H.Ueber die kleinste Kugel, die eine räumliche Figur einschliesst. J. Reine Angew. Math. 123 (1901), 241257.
[25]McDuff, D.Symplectic manifolds with contact type boundaries. Invent. Math. 103 (1991), 651671.
[26]McDuff, D. and Salamon, D.J-holomorphic Curves and Symplectic Topology. Amer. Math. Soc. Colloq. Publ. 52 (American Mathematical Society, Providence, RI, 2004).
[27]Niederkrüger, K.The plastikstufe – a generalization of the overtwisted disk to higher dimensions. Algebr. Geom. Topol. 6 (2006), 24732508.
[28]Niederkrüger, K. and Rechtman, A.The Weinstein conjecture in the presence of submanifolds having a Legendrian foliation. J. Topol. Anal. 3 (2011), 405421.
[29]Nijenhuis, A. and Woolf, W. B.Some integration problems in almost-complex and complex manifolds. Ann. of Math. (2) 77 (1963), 424489.
[30]Oancea, A. and Viterbo, C.On the topology of fillings of contact manifolds and applications. Comment. Math. Helv. 87 (2012), 4169.
[31]Thom, R.Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28 (1954), 1786.
[32]Viterbo, C.A proof of Weinstein's conjecture in $\R^{2n}$. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 337356.
[33]Viterbo, C.Exact Lagrange submanifolds, periodic orbits and the cohomology of free loop spaces. J. Differential Geom. 47 (1997), 420468.
[34]Viterbo, C.Functors and computations in Floer homology with applications I. Geom. Funct. Anal. 9 (1999), 9851033.
[35]Weinstein, A.On the hypotheses of Rabinowitz' periodic orbit theorems. J. Differential Equations 33 (1979), 336352.
[36]Yau, M.-L.Cylindrical contact homology of subcritical Stein-fillable contact manifolds. Geom. Topol. 8 (2004), 12431280.

Related content

Powered by UNSILO

Symplectic cobordisms and the strong Weinstein conjecture



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.