Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T09:49:11.868Z Has data issue: false hasContentIssue false

S-rings over loops, right mapping groups and transversals in permutation groups

Published online by Cambridge University Press:  24 October 2008

K. W. Johnson
Affiliation:
University of the West Indies, Kingston 7, Jamaica

Extract

The centralizer ring of a permutation representation of a group appears in several contexts. In (19) and (20) Schur considered the situation where a permutation group G acting on a finite set Ω has a regular subgroup H. In this case Ω may be given the structure of H and the centralizer ring is isomorphic to a subring of the group ring of H. Schur used this in his investigations of B-groups. A group H is a B-group if whenever a permutation group G contains H as a regular subgroup then G is either imprimitive or doubly transitive. Surveys of the results known on B-groups are given in (28), ch. IV and (21), ch. 13. In (28), p. 75, remark F, it is noted that the existence of a regular subgroup is not necessary for many of the arguments. This paper may be regarded as an extension of this remark, but the approach here differs slightly from that suggested by Wielandt in that it appears to be more natural to work with transversals rather than cosets.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Albert, A. A.Quasigroups I. Trans. Amer. Math. Soc. 54 (1943), 507519.CrossRefGoogle Scholar
(2)Baer, R.Nets and groups I. Trans. Amer. Math. Soc. 46 (1939), 110141.CrossRefGoogle Scholar
(3)Beneteau, L.Boucles de Moufang commutatives d'exposant 3 et quasi-groupes de Steiner distributifs. C. R. Acad. Sci. Paris A, 281 (1975), 7576.Google Scholar
(4)Beneteau, L.Les groupes de Fischer au sens restreint: dimension, et classe de nilpotence du dérivé. C. R. Acad. Sci. Paris A, 285 (1977), 693695.Google Scholar
(5)Bruck, R. H.A survey of binary systems (Springer-Verlag, Berlin, Göttingen, Heidelberg, 1958).CrossRefGoogle Scholar
(6)Cameron, P. J. Suborbits in transitive permutation groups. In Combinatorics, ed. Hall, M. Jr and van Lint, J. H. (Mathematical Centre, Amsterdam, 1975), pp. 419450.CrossRefGoogle Scholar
(7)Denes, J. and Keedwell, A. D.Latin squares and their applications (Academic Press, 1974).Google Scholar
(8)Doro, S.Simple Moufang loops. Math. Proc. Cambridge Philos. Soc. 84 (1978), 377392.CrossRefGoogle Scholar
(9)Fischer, B.Distributive Quasigruppen endliche Ordnung. Math. Z. 83 (1964), 267303.CrossRefGoogle Scholar
(10)Frame, J. S.The degrees of the irreducible components of simply transitive permutation groups. Duke Math. J. 3 (1937), 817.CrossRefGoogle Scholar
(11)Frame, J. S.The double cosets of a finite group. Bull. Amer. Math. Soc. 47 (1941), 458467.CrossRefGoogle Scholar
(12)Frame, J. S.Double coset matrices and group characters. Bull. Amer. Math. Soc. 49 (1943), 8192.CrossRefGoogle Scholar
(13)Frame, J. S.Group decomposition by double coset matrices. Bull. Amer. Math. Soc. 54 (1948), 740755.CrossRefGoogle Scholar
(14)Glaubermann, G.On loops of odd order I. J. Algebra 1 (1964), 374396.CrossRefGoogle Scholar
(15)Gorenstein, D.The classification of finite simple groups. Bull. Amer. Math. Soc. (New Series), 1, no. 1 (1979), pp. 43199.CrossRefGoogle Scholar
(16)Higman, D. G.Intersection matrices for finite permutation groups. J. Algebra 6 (1967), 2242.CrossRefGoogle Scholar
(17)Johnson, K. W. and Sharma, B. L.On a family of Bol loops. To appear in Bol. Un. Mat. Ital., Geometry and Algebra Supplement, 1980.Google Scholar
(18)Neumann, P. M. Finite permutation groups, edge coloured graphs and matrices. In Topics in group theory and computation (Academic Press, London, 1977).Google Scholar
(19)Schur, I.Neuer Beweis eines Satzes von W. Burnside, Jahrb. Deutsche Math – Verein. 17 (1908), 171176. Gesammelte Abhandlungen (Springer-Verlag 1973) vol. I, 266–271.Google Scholar
(20)Schur, I.Zur Theorie der einfach transitiven Permutationsgruppen. Sitzungsber. Preuss. Akad. Wiss. Berlin (1933), 598623. Gesammelte Abhandlungen (Springer-Verlag, 1973), III, 266–291.Google Scholar
(21)Scott, W. S.Group theory (Prentice-Hall, New Jersey, 1964).Google Scholar
(22)Smith, J. D. H.Centralizer rings of multiplication groups on quasigroups. Math. Proc. Cambridge Philos. Soc. 79 (1976), 427432.CrossRefGoogle Scholar
(23)Smith, J. D. H.Finite distributive quasigroups. Math. Proc. Cambridge Philos. Soc. 80 (1976), 3742.CrossRefGoogle Scholar
(24)Tamaschke, O.Ringtheoretische Behandlung einfach transitiven Permutationsgruppen. Math. Z. 73 (1960), 393408.CrossRefGoogle Scholar
(25)Tamaschke, O.Zut Theorie der Permutationsgruppen mit regularen Untergruppe, I; II. Math. Z. 80 (1963), 328355; 443–465.CrossRefGoogle Scholar
(26)Wielandt, H.Zur Theorie der einfach transitiven Permutationsgruppen. Math. Z. 40 (1935), 582587.CrossRefGoogle Scholar
(27)Wielandt, H.Zur Theorie der einfach transitiven Permutationsgruppen: II. Math. Z. 52 (1949), 384393.CrossRefGoogle Scholar
(28)Wielandt, H.Finite permutation groups (Academic Press, New York, London, 1964).Google Scholar