Skip to main content Accessibility help

S-integral points on elliptic curves

  • N. P. Smart (a1)


In this paper I give an algorithm to find all ‘small’ S-integral points on an elliptic curve. I would like to thank N. Stephens for suggesting I consider such equations and the Wingate Foundation for supporting me whilst carrying out the research. As is usual c1, c2, …, will denote positive real constants which are effectively computable.



Hide All
[1]Ayad, M.. Points Δ-entiers sur les courbes elliptiques. J. Number Theory 38 (1991), 323337.
[2]Cremona, J. E.. Algorithms For Modular Elliptic Curves (Cambridge University Press, 1993).
[3]David, S.. Minorations de formes linéaires de logarithmes elliptiques. Publ. Math. de l'Univ. Pierre et Marie Curie, 106, Problèmes diophantiens 19911992, exposé no 3.
[4]Lang, S.. Elliptic Curves: Diophantine Analysis (Springer-Verlag, 1978).
[5]Lenstra, A. K., Lenstra, H. W. and Lovász, L.. Factoring polynomials with rational coefficients. Math. Ann. 261 (1982), 515534.
[6]Silverman, J. H.. The Arithmetic Of Elliptic Curves (Springer-Verlag, 1986).
[7]Stroeker, R. J. and Tzanakis, N.. Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, to appear in Acta. Arith.
[8]Tzanakis, N. and De Weger, B. M. M.. On the practical solution of the Thue equation. J. Number Theory 31 (1989), 99132.
[9]Tzanakis, N. and De Weger, B. M. M.. How to explicitly solve a Thue-Mahler equation. Comp. Math. 84 (1992), 223288.
[10]De Weger, B. M. M.. Solving exponential diophantine equations using lattice basis reduction algorithms. J. Number Theory 26 (1987), 325367.
[11]De Weger, B. M. M.. Algorithms For Diophantine Equations. CWI-Tract, Centre For Mathematics and Computer Science (Amsterdam, 1989).
[12]Zagier, D.. Large integral points on elliptic curves. Math. Comp. 48 (1987), 425436.

S-integral points on elliptic curves

  • N. P. Smart (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed