Skip to main content Accessibility help

The singularities of H-space

  • K. P. Tod (a1)


The non-linear graviton construction of Penrose (9) and the ℋ-space construction of Newman (6) are two complementary techniques for constructing complex four dimensional space-times with quadratic metric and anti-self-dual curvature tensor.

In the former, the space-time is the space of holomorphic sections of a complex fibre space obtained by deforming part of flat twistor space. In the latter the space-time is the space of regular solutions of a differential equation, the good cut equation.

Pathologies arise in the non-linear graviton construction when the normal bundle of a holomorphic section changes. This is reflected in the ℋ-space construction by a change in the character of the solutions of the linearized good cut equation, the Newman equation.



Hide All
(1)Douady, A.Ann. Inst. Fourier. Grenoble 16 (1966), 1.
(2)Eastwood, M. G. and Tod, K. P.Edth – A differential operator on the sphere. Proc. Cambridge Philos. Soc. 92 (1982), 317330.
(3)Eells, J.Elliptic operators on manifolds in complex analysis and its applications, vol. I (IAEA, Vienna, 1976).
(4)Hansen, R., Newman, E. T., Penrose, R. and Tod, K. P.Proc. Roy. Soc. London, Ser. A 363 (1978), 445.
(5)Kodaira, K.Ann. Math. 75 (1962), 146. Am. J. Math. 85 (1963), 79.
(6)Newman, E. T.Gen. Eel. Grav. 7 (1976), 107.
(7)Palais, R. S. (ed.). Seminar on the Atiyah-Singer index theorem, Ann. Study 57 (Princeton University Press, 1966).
(8)Penrose, R. and MacCallum, M. A. H.Phys. Rep. 6c. (1973), 241.
(9)Penrose, R.Gen. Bel. Grav. 7 (1976), 31.
(10)Sparling, G. A. J. and Tod, K. P.J. Math. Phys. 22 (1981), 331.

The singularities of H-space

  • K. P. Tod (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.