[1]Ajtai, M. and Szemerédi, E.. Sets of lattice points that form no squares. Stud. Sci. Math. Hungar. 9 (1975), 9–11.

[2]Angel, O., Benjamini, I. and Horesh., N. An isoperimetric inequality for planar triangulations. Discrete Comput. Geom. (2018), 1–8.

[3]Brown, W., Erdős, P. and Sós., V. On the existence of triangulated spheres in 3-graphs, and related problems. Period. Math. Hungar. 3(3-4) (1973), 221–228.

[4]Dodos, P., Kanellopoulos, V. and Tyros., K. A simple proof of the density Hales–Jewett theorem. Int. Math. Res. Not. (12) (2014), 3340–3352.

[5]Erdős, P., Frankl, P. and Rödl., V. The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs Combin., 2(1) (1986), 113–121.

[6]Erdős, P. and Straus, E.. How abelian is a finite group? Linear Multilinear Algebra 3(4) (1976), 307–312.

[7]Evans, T.. Embedding incomplete latin squares. Amer. Math. Monthly 67(10) (1960), 958–961.

[8]Furstenberg, H. and Katznelson, Y.. An ergodic Szemerédi theorem for commuting transformations. J. Anal. Math. 34(1) (1978), 275–291.

[9]Furstenberg, H. and Katznelson, Y.. A density version of the Hales–Jewett theorem. J. Anal. Math. 57(1) (1991), 64–119.

[10]Gowers, W. T.. Hypergraph regularity and the multidimensional Szemerédi theorem. Ann. of Math. (2007), 897–946.

[11]Harper, L. H.. Global Methods for Combinatorial Isoperimetric Problems. Camb. Stud. Adv. Math. (Cambridge University Press, 2004).

[12]Long, J.. A note on the Brown–Erdős–Sós conjecture in groups. Preprint (arXiv:1902.07693).

[13]Polymath, D.. A new proof of the density Hales–Jewett theorem. Ann. of Math. (2012), 1283–1327.

[14]Pyber, L.. How abelian is a finite group? In The Mathematics of Paul Erdős I, pages 372–384 (Springer, 1997).

[15]Rödl, V., Schacht, M., Tengan, E. and Tokushige., N. Density theorems and extremal hypergraph problems. Israel J. Math. 152(1) (2006), 371–380.

[16]Roth, K. F.. On certain sets of integers. J. Lond. Math. Soc. 1(1) (1953), 104–109.

[17]Ruzsa, I. Z. and Szemerédi, E.. Triple systems with no six points carrying three triangles. Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18 (1978), 939–945.

[18]Sárközy, G. N. and Selkow, S.. An extension of the Ruzsa–Szemerédi theorem. Combinatorica 25(1) (2004), 77–84.

[19]Solymosi, J.. Note on a generalisation of Roth’s theorem. In Discrete Comput. Geom., pages 825–827 (Springer, 2003).

[20]Solymosi, J.. The (7, 4)-conjecture in finite groups. Combin. Probab. Comput. 24(4) (2015), 680–686.

[21]Solymosi, J. and Wong, C.. The Brown–Erdős–Sós conjecture in finite abelian groups. arXiv:1901.10631.

[22]Szemerédi, E.. On sets of integers containing no *k* elements in arithmetic progression. Acta Arith. 27 (1975), 199–245. Collection of articles in memory of Juriĭ Vladimirovič Linnik.

[23]Wong, C.. On the existence of dense substructures in finite groups. arXiv:1902.07819.