Skip to main content Accessibility help

Polynomial expansions of positive harmonic functions in the unit ball

  • D. H. Armitage (a1)


It is well known that if h is harmonic in the open unit ball B of the Euclidean space N (where N ≥ 2), then there exist homogeneous harmonic polynomials Hn of degree n in N such that converges absolutely and locally uniformly to h in B (see e.g. Brelot[2], appendice). Further, it is easy to show that this series is unique and that each polynomial Hn is the sum of all the monomial terms of degree n in the multiple Taylor series of h about the origin 0. We call the polynomial expansion of h. Our aim is to obtain sharp upper and lower bounds for the individual terms Hn and for the partial sums of this expansion in the case where h > 0 in B.



Hide All
[1]Armitage, D. H.. Spherical extrema of harmonic polynomials. J. London Math. Soc. (2) 19 (1979), 451456.
[2]Brelot, M.. Élements de la Théorie Classique du Potentiel (Centre de documentation universitaire, Paris, 1969).
[3]Beelot, M. and Choquet, G.. Polynômes Harmoniques et Polyharmoniques (Seconde colloque sur les équations aux dérivées partielles, Bruxelles, 1954).
[4]Carathéodory, C.. Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 32 (1911), 193217.
[5]Cooper, R.. The extremal values of Legendre polynomials and of certain related functions. Proc. Cambridge Philos. Soc. 46 (1950), 549554.
[6]Doob, J. L.. Classical Potential Theory and its Probabilistic Counterpart (Springer-Verlag, 1983).
[7]Goldstein, M. and Kuran, Ü.. On Harnack-type inequalities and the extremality of the Poisson kernel. Complex Variables Theory Appl. 9 (1988), 327342.
[8]Müller, C.. Spherical Harmonics. Lecture Notes in Math. vol. 17 (Springer-Verlag, 1966).
[9]Schur, I.. Über die Koeffizientensummen einer Potenzreihe mit positivem reelem Teil. Arch. Math. Phys. 27 (1918), 126135.
[10]Szegö, G.. Koeffizientenabschätzungen bei ebenen und räumlichen harmonischen Entwicklungen. Math. Ann. 96 (1927), 601632.
[11]Szegö, G.. Orthogonal Polynomials (American Mathematical Society, 1967).
[12]Watson, G. N.. A Treatise on the Theory of Bessel Functions (Cambridge University Press, 1922).

Polynomial expansions of positive harmonic functions in the unit ball

  • D. H. Armitage (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed