[1]
Breuillard, E. and Green, B. J.. Approximate groups, I: the torsion-free nilpotent case. J. Inst. Math. Jussieu 10(1) (2011), 37–57.

[2]
Breuillard, E. and Green, B. J.. Approximate groups, II: the solvable linear case. Q. J. Math. 62(3) (2011), 513–521.

[3]
Breuillard, E., Green, B. J. and Tao, T. C.. Approximate subgroups of linear groups. Geom. Funct. Anal. 21(4) (2011), 774–819.

[4]
Breuillard, E., Green, B. J. and Tao, T. C.. The structure of approximate groups. Publ. Math. IHES. 116(1) (2012), 115–221.

[5]
Breuillard, E., Green, B. J. and Tao, T. C.. Small doubling in groups. *Proc. Erdös Centenery Conference* (2013); arXiv:1301.7718.

[6]
Breuillard, E. and Tointon, M. C. H.. Nilprogressions and groups with moderate growth. Adv. Math. 289 (2016), 1008–1055.

[7]
Chang, M. C.. A polynomial bound in Freiman’s theorem. Duke Math. J
*.* 113(3) (2002), 399–419.

[8]
Freiman, G. A.. Foundations of a structural theory of set addition. *Trans. of Math. Monogr*. 37 (Amer. Math. Soc., Providence, RI 1973). Translated from the 1966 Russian version, published by Kazan Gos. Ped. Inst.

[9]
Gill, N. and Helfgott, H. A.. Growth in solvable subgroups of *GL*
_{
r
}(*ℤ*/*pℤ*). Math. Ann. 360(1) (2014), 157–208.

[10]
Green, B. J.. Approximate groups and their applications: work of Bourgain, Gamburd, Helfgott and Sarnak. *Current events bulletin of the AMS* (2010), arXiv:0911.3354.

[11]
Green, B. J.. Approximate algebraic structure. *Proc. ICM* 2014 vol. 1, 341–367.

[12]
Green, B. J. and Ruzsa, I. Z.. Freiman’s theorem in an arbitrary abelian group. J. Lond. Math. Soc. 75(1) (2007), 163–175.

[13]
Hall, M.. *The theory of groups*. Amer. Math. Soc./Chelsea, Providence, RI (1999).

[14]
Helfgott, H. A.. Growth in groups: ideas and perspectives. Bull. Amer. Math. Soc. 52 (2015), 357–413.

[15]
Mal’cev, A. I.. On certain classes of infinite soluble groups. Mat. Sb. 28 (1951), 567–588 (in Russian), *Amer. Math. Soc. Transl.* 45(2) (1956), 1–21.

[16]
Petridis, G.. New proofs of Plünnecke-type estimates for product sets in groups. Combinatorica 32(6) (2012), 721–733.

[17]
Ruzsa, I. Z.. An analog of Freiman’s theorem in groups, Structure theory of set addition. Astérisque 258 (1999), 323–326.

[18]
Sanders, T.. On the Bogolyubov–Ruzsa lemma. Anal. PDE 5(3) (2012), 627–655.

[19]
Sanders, T.. The structure theory of set addition revisited. Bull. Amer. Math. Soc. 50 (2013), 93–127.

[20]
Schoen, T.. Near optimal bounds in Freiman’s theorem. Duke Math. J
*.* 158 (2011), 1–12.

[21]
Tao, T. C.. Product set estimates for non-commutative groups. Combinatorica 28(5) (2008), 547–594.

[22]
Tao, T. C.. Inverse theorems for sets and measures of polynomial growth. Q. J. Math. 68(1) (2017), 13–57.

[23]
Tessera, R. and Tointon, M. C. H.. Properness of nilprogressions and the persistence of polynomial growth of given degree. Discrete Anal
*.* 17 (2018), 38 pp.

[24]
Tointon, M. C. H.. Freiman’s theorem in an arbitrary nilpotent group. Proc. London Math. Soc. 109 (2014), 318–352.

[25]
Tointon, M. C. H.. Approximate subgroups of residually nilpotent groups. Math. Ann. 374 (2019), 499–515.

[26]
Tointon, M. C. H.. Raconte-moi… les groupes approximatifs. Gaz. Math. 160 (2019), 53–59.

[27]
Tointon, M. C. H.. Introduction to approximate groups. London Mathematical Society Student Texts 94 (Cambridge University Press, Cambridge, 2020).

[28]
Wehrfritz, B. A. F.. Infinite Linear Groups (Springer-Verlag, Berlin, 1973).