Skip to main content Accessibility help
×
Home

Polylogarithmic bounds in the nilpotent Freiman theorem

  • Matthew C. H. Tointon (a1)

Abstract

We show that if A is a finite K-approximate subgroup of an s-step nilpotent group then there is a finite normal subgroup $H \subset {A^{{K^{{O_s}(1)}}}}$ modulo which ${A^{{O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K)}}$ contains a nilprogression of rank at most ${O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K)$ and size at least $\exp ( - {O_s}(\mathop {\log }\nolimits^{{O_s}(1)} K))|A|$ . This partially generalises the close-to-optimal bounds obtained in the abelian case by Sanders, and improves the bounds and simplifies the exposition of an earlier result of the author. Combined with results of Breuillard–Green, Breuillard–Green–Tao, Gill–Helfgott–Pyber–Szabó, and the author, this leads to improved rank bounds in Freiman-type theorems in residually nilpotent groups and certain linear groups of bounded degree.

Copyright

Footnotes

Hide All

The author is the Stokes Research Fellow at Pembroke College, Cambridge.

Footnotes

References

Hide All
[1] Breuillard, E. and Green, B. J.. Approximate groups, I: the torsion-free nilpotent case. J. Inst. Math. Jussieu 10(1) (2011), 3757.
[2] Breuillard, E. and Green, B. J.. Approximate groups, II: the solvable linear case. Q. J. Math. 62(3) (2011), 513521.
[3] Breuillard, E., Green, B. J. and Tao, T. C.. Approximate subgroups of linear groups. Geom. Funct. Anal. 21(4) (2011), 774819.
[4] Breuillard, E., Green, B. J. and Tao, T. C.. The structure of approximate groups. Publ. Math. IHES. 116(1) (2012), 115221.
[5] Breuillard, E., Green, B. J. and Tao, T. C.. Small doubling in groups. Proc. Erdös Centenery Conference (2013); arXiv:1301.7718.
[6] Breuillard, E. and Tointon, M. C. H.. Nilprogressions and groups with moderate growth. Adv. Math. 289 (2016), 10081055.
[7] Chang, M. C.. A polynomial bound in Freiman’s theorem. Duke Math. J . 113(3) (2002), 399419.
[8] Freiman, G. A.. Foundations of a structural theory of set addition. Trans. of Math. Monogr. 37 (Amer. Math. Soc., Providence, RI 1973). Translated from the 1966 Russian version, published by Kazan Gos. Ped. Inst.
[9] Gill, N. and Helfgott, H. A.. Growth in solvable subgroups of GL r (/pℤ). Math. Ann. 360(1) (2014), 157208.
[10] Green, B. J.. Approximate groups and their applications: work of Bourgain, Gamburd, Helfgott and Sarnak. Current events bulletin of the AMS (2010), arXiv:0911.3354.
[11] Green, B. J.. Approximate algebraic structure. Proc. ICM 2014 vol. 1, 341–367.
[12] Green, B. J. and Ruzsa, I. Z.. Freiman’s theorem in an arbitrary abelian group. J. Lond. Math. Soc. 75(1) (2007), 163175.
[13] Hall, M.. The theory of groups. Amer. Math. Soc./Chelsea, Providence, RI (1999).
[14] Helfgott, H. A.. Growth in groups: ideas and perspectives. Bull. Amer. Math. Soc. 52 (2015), 357413.
[15] Mal’cev, A. I.. On certain classes of infinite soluble groups. Mat. Sb. 28 (1951), 567588 (in Russian), Amer. Math. Soc. Transl. 45(2) (1956), 1–21.
[16] Petridis, G.. New proofs of Plünnecke-type estimates for product sets in groups. Combinatorica 32(6) (2012), 721733.
[17] Ruzsa, I. Z.. An analog of Freiman’s theorem in groups, Structure theory of set addition. Astérisque 258 (1999), 323326.
[18] Sanders, T.. On the Bogolyubov–Ruzsa lemma. Anal. PDE 5(3) (2012), 627655.
[19] Sanders, T.. The structure theory of set addition revisited. Bull. Amer. Math. Soc. 50 (2013), 93127.
[20] Schoen, T.. Near optimal bounds in Freiman’s theorem. Duke Math. J . 158 (2011), 112.
[21] Tao, T. C.. Product set estimates for non-commutative groups. Combinatorica 28(5) (2008), 547594.
[22] Tao, T. C.. Inverse theorems for sets and measures of polynomial growth. Q. J. Math. 68(1) (2017), 1357.
[23] Tessera, R. and Tointon, M. C. H.. Properness of nilprogressions and the persistence of polynomial growth of given degree. Discrete Anal . 17 (2018), 38 pp.
[24] Tointon, M. C. H.. Freiman’s theorem in an arbitrary nilpotent group. Proc. London Math. Soc. 109 (2014), 318352.
[25] Tointon, M. C. H.. Approximate subgroups of residually nilpotent groups. Math. Ann. 374 (2019), 499515.
[26] Tointon, M. C. H.. Raconte-moi… les groupes approximatifs. Gaz. Math. 160 (2019), 5359.
[27] Tointon, M. C. H.. Introduction to approximate groups. London Mathematical Society Student Texts 94 (Cambridge University Press, Cambridge, 2020).
[28] Wehrfritz, B. A. F.. Infinite Linear Groups (Springer-Verlag, Berlin, 1973).

MSC classification

Polylogarithmic bounds in the nilpotent Freiman theorem

  • Matthew C. H. Tointon (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed