Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T09:45:59.794Z Has data issue: false hasContentIssue false

A note on a theorem of Maddox on strong almost convergence

Published online by Cambridge University Press:  24 October 2008

G. Das
Affiliation:
Utkal University, Bhubaneswar, India
S. K. Mishra
Affiliation:
Utkal University, Bhubaneswar, India

Extract

Let m be the set of all real sequences x = (xn) with norm . A linear functional L on m is said to be a Banach limit (see Banach(1), p. 32) if it has the following properties:

(i) L(x) ≥ 0, if x ≥ 0 (i.e. xn 0, for all nN)

(ii) L{e) = 1, where e = (1, 1, 1,…),

(iii) L(Sx) = L(x), where (Sx)n = xn+1.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Banach, S.Théorié dés opérations linéaires (Chelsea, N.Y., 1955).Google Scholar
(2)Das, G., Kuttner, B. and Nanda, S.Some sequence spaces and absolute almost convergence. Trans. Amer. Math. Soc. (To appear.)Google Scholar
(3)Jerison, M.The set of all generalised limits of bounded sequences. Can. J. Math. 9 (1957), 7980.Google Scholar
(4)Lorentz, G. G.A contribution to the theory of divergent series. Acta. Math. 80 (1948), 167190.Google Scholar
(5)Maddox, I. J.A new type of convergence. Math. Proc. Cambridge Philos. Soc. 83 (1978), 6164.Google Scholar
(6)Maddox, I. J.On strong almost convergence. Math. Proc. Cambridge Philoa. Soc. 85 (1979), 345350.Google Scholar
(7)Simons, S.Banach limits, infinite matrices and sub-linear functionals. Jour. Math. Anal. Applications 26 (1969), 640655.Google Scholar
(8)Sucheston, L.On existence of finite invariant measures. Math. Z. 86 (1964), 327339.CrossRefGoogle Scholar