[1]Bagley, R. W. and Wu, T. S.. Maximal compact normal subgroups and pro-Lie groups. Proc. Amer. Math. Soc. 93 (1985), 373–376.

[2]Bagley, R. W., Wu, T. S. and Yang, J. S.. On a class of topological groups more general than SIN groups. Pacific J. Math. 117 (1985), 209–217.

[3]Bagley, R. W., Wu, T. S. and Yang, J. S.. Pro-Lie groups. Trans. Amer. Math. Soc. 287 (1985), 829–838.

[4]Bagley, R. W. and Yang, J. S.. Locally invariant topological groups and semidirect products. Proc. Amer. Math. Soc. 93 (1985), 139–144.

[5]Bagley, R. W. and Peyrovian, M. R.. A note on compact subgroups of topological groups. Bull. Austral. Math. Soc. 33 (1986), 273–278

[6]Grosser, S., Loos, O. and Moskowitz, M.. Über Automorphismengruppen lokalkompakter Gruppen und Derivationen von Lie-Gruppen. Math. Z. 114 (1970), 321–339.

[7]Grosser, S. and Moskowitz, M.. On central topological groups. Trans. Amer. Math. Soc. 127 (1967), 317–340.

[8]Grosser, S. and Moskowitz, M.. Compactness conditions in topological groups. J. Reine Angew Math. 246 (1971), 1–40.

[9]Hall, M. Jr. The Theory of Groups (Macmillan, 1959).

[10]Hochschild, G.. The automorphism group of a Lie group. Trans. Amer. Math. Soc. 72 (1952), 209–216.

[11]Hofmann, K. H., Liukkonen, J. R. and Mislove, M. W.. Compact extensions of compactly generated nilpotent groups are pro-Lie. Proc. Amer. Math. Soc. 84 (1982), 443–448.

[12]Iwasawa, K.. On some types of topological groups. Ann. of Math. (2) 50 (1949), 507–558.

[13]Mostow, G. D.. Self-adjoint groups. Ann. of Math. (2) 62 (1955), 44–55.

[14]Montgomery, D. and Zippin, L.. *Topological Transformation Groups* (Interscienee, 1955).

[15]Nachbin, L.. The Haar Integral (Van Nostrand, 1965).

[16]Peyrovian, M. R.. Maximal compact normal subgroups. Proc. Amer. Math. Soc. 99 (1987), 389–394.

[17]Platonov, V. P.. Locally protectively nilpotent subgroups and nilelements in topological groups. Amer. Math. Soc. Transl. 66 (1968), 111–129.

[18]Platonov, V. P.. The structure of topological locally projectively nilpotent groups and groups with a normalizer condition. Mat. Sb. (N.S.) 114 (1967), 38–58.

[19]Raghunathan, M. S.. Discrete Subgroups of Lie Groups (Springer-Verlag, 1972).

[20]Wang, S. P.. Compactness properties of topological groups. Trans. Amer. Math. Soc. 154 (1971), 301–314.

[21]Wang, S. P.. Compactness properties of topological groups, II. Duke Math. J. 39 (1972), 243–251.

[22]Wu, T. S.. A certain type of locally compact totally disconnected topological groups. Proc. Amer. Math. Soc. 23 (1969), 613–614.

[23]Wu, T. S. and Yu, Y. K.. Compactness properties of topological groups. Michigan Math. J. 19 (1972), 299–313.

[24]Yu, Y. K.. Topologically semisimple groups. Proc. London Math. Soc. (3) 33 (1976), 515–534.