Skip to main content Accessibility help
×
Home

Locally compact groups: maximal compact subgroups and N-groups

  • R. W. Bagley (a1), T. S. Wu (a2) and J. S. Yang (a3)

Abstract

If G is a locally compact group such that G/G0 contains a uniform compactly generated nilpotent subgroup, then G has a maximal compact normal subgroup K such that G/G is a Lie group. A topological group G is an N-group if, for each neighbourhood U of the identity and each compact set CG, there is a neighbourhood V of the identity such that for each gG. Several results on N-groups are obtained and it is shown that a related weaker condition is equivalent to local finiteness for certain totally disconnected groups.

Copyright

References

Hide All
[1]Bagley, R. W. and Wu, T. S.. Maximal compact normal subgroups and pro-Lie groups. Proc. Amer. Math. Soc. 93 (1985), 373376.
[2]Bagley, R. W., Wu, T. S. and Yang, J. S.. On a class of topological groups more general than SIN groups. Pacific J. Math. 117 (1985), 209217.
[3]Bagley, R. W., Wu, T. S. and Yang, J. S.. Pro-Lie groups. Trans. Amer. Math. Soc. 287 (1985), 829838.
[4]Bagley, R. W. and Yang, J. S.. Locally invariant topological groups and semidirect products. Proc. Amer. Math. Soc. 93 (1985), 139144.
[5]Bagley, R. W. and Peyrovian, M. R.. A note on compact subgroups of topological groups. Bull. Austral. Math. Soc. 33 (1986), 273278
[6]Grosser, S., Loos, O. and Moskowitz, M.. Über Automorphismengruppen lokalkompakter Gruppen und Derivationen von Lie-Gruppen. Math. Z. 114 (1970), 321339.
[7]Grosser, S. and Moskowitz, M.. On central topological groups. Trans. Amer. Math. Soc. 127 (1967), 317340.
[8]Grosser, S. and Moskowitz, M.. Compactness conditions in topological groups. J. Reine Angew Math. 246 (1971), 140.
[9]Hall, M. Jr. The Theory of Groups (Macmillan, 1959).
[10]Hochschild, G.. The automorphism group of a Lie group. Trans. Amer. Math. Soc. 72 (1952), 209216.
[11]Hofmann, K. H., Liukkonen, J. R. and Mislove, M. W.. Compact extensions of compactly generated nilpotent groups are pro-Lie. Proc. Amer. Math. Soc. 84 (1982), 443448.
[12]Iwasawa, K.. On some types of topological groups. Ann. of Math. (2) 50 (1949), 507558.
[13]Mostow, G. D.. Self-adjoint groups. Ann. of Math. (2) 62 (1955), 4455.
[14]Montgomery, D. and Zippin, L.. Topological Transformation Groups (Interscienee, 1955).
[15]Nachbin, L.. The Haar Integral (Van Nostrand, 1965).
[16]Peyrovian, M. R.. Maximal compact normal subgroups. Proc. Amer. Math. Soc. 99 (1987), 389394.
[17]Platonov, V. P.. Locally protectively nilpotent subgroups and nilelements in topological groups. Amer. Math. Soc. Transl. 66 (1968), 111129.
[18]Platonov, V. P.. The structure of topological locally projectively nilpotent groups and groups with a normalizer condition. Mat. Sb. (N.S.) 114 (1967), 3858.
[19]Raghunathan, M. S.. Discrete Subgroups of Lie Groups (Springer-Verlag, 1972).
[20]Wang, S. P.. Compactness properties of topological groups. Trans. Amer. Math. Soc. 154 (1971), 301314.
[21]Wang, S. P.. Compactness properties of topological groups, II. Duke Math. J. 39 (1972), 243251.
[22]Wu, T. S.. A certain type of locally compact totally disconnected topological groups. Proc. Amer. Math. Soc. 23 (1969), 613614.
[23]Wu, T. S. and Yu, Y. K.. Compactness properties of topological groups. Michigan Math. J. 19 (1972), 299313.
[24]Yu, Y. K.. Topologically semisimple groups. Proc. London Math. Soc. (3) 33 (1976), 515534.

Locally compact groups: maximal compact subgroups and N-groups

  • R. W. Bagley (a1), T. S. Wu (a2) and J. S. Yang (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.