[1]Adiprasto, K.,Huh, J. andKatz, E.. Hodge theory for combinatorial geometries. arXiv:1511.02888.
[2]Chari, M. K.. Two decompositions in topological combinatorics with applications to matroid complexes. Trans. Am. Math. Soc. 349 (1997), 3925–3943.
[3]D’Adderio, M.,Moci, L. and Arithmetic matroids. The Tutte polynomial and toric arrangement. Adv. Math. 232 (2013), 335–367.
[4]Dowling, T. A. andWilson, R. M.. The slimmest geometric lattices. Trans. Am. Math. Soc. 196 (1974), 203–215.
[5]Hibi, T.. Face number inequalities for matroid complexes and Cohen–Macaulay types of Stanley–Reisner rings of distributive lattices. Pac. J. Math. 154 (1992), no. 2, 253–264.
[6]Lenz, M.. The f-vector of a representable-matroid complex is log-concave. Adv. Appl. Math. 51 (2013), no. 5, 543–545.
[7]Huh, J.. Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs. J. Am. Math. Soc. 25 (2012), 907–927.
[8]Huh, J. andKatz, E.. Log-concavity of characteristic polynomials and Bergman fan of matroids. Math. Ann. 354 (2012), 1103–1116.
[9]Huh, J.. h-vectors of matroids and logarithmic concavity. Adv. Math. 270 (2015), 49–59.
[10]Meredith, G. H. J.. Coefficients of chromatic polynomials. J. Combin. Theory Ser. B 13 (1972), 14–17.
[11]Moci, L.. A Tutte polynomial for toric arrangements. Trans. Am. Math. Soc. 364 (2012) 1067–1088.
[12]Orlik, P. andTerao, H.. Arrangements of Hyperplanes (Springer–Verlag, Berlin, 1992).
[13]Oxley, J. G.. Matroid Theory (Oxford University Press, Oxford, 2011).
[14]Read, R. C.. An introduction to chromatic polynomials. J. Comb. Theory 4 (1968), 52–71. MR0224505(37:104).
[15]Swartz, E.. Lower bounds for h-vectors of k-CM, independence, and broken circuit complexes. SIAM J. Discrete Math. 18 (2004/05), no. 3, 647–661.
[16]Stanley, R. P.. An introduction to hyperplane arrangements. In: edited byMiller, E.,Reiner, V.,Sturmfels, B.. Geometric Combinatorics. IAS/Park City Math. Ser., vol. 13. (American Mathematical Society, Providence, RI, 2007), 389–496.
[17]Wagner, D. G.. Negatively correlated random variables and Mason’s conjecture for independent sets in matroids. Ann. Comb. 12 (2008), no. 2, 211–239.
[18]White, N.. Theory of Matroids. In: Encyclopedia of Mathematics and its Applications, vol. 26. (Cambridge University Press, Cambridge, 1986).
[19]Whitney, H.. A logical expansion in mathematics. Bull. Am. Math. Soc. 38 (1932), 572–579.
[20]Whitney, H.. The coloring of graphs. Ann. Math. 33 (1932), no. 2, 688–718.
[21]Whitney, H.. On the abstract properties of linear dependence. Am. J. Math. 57 (1935) 509–533.
[22]Wilf, H. S.. Which polynomials are chromatic? Colloquio Internazionale sulle Teorie Combinatorie (1976), 247–256.
[23]Zaslavsky, T.. Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes. Mem. Am. Math. Soc. 1 (1975) no. 154.