Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T07:55:54.466Z Has data issue: false hasContentIssue false

The law of the iterated logarithm for certain power series and generalized Nörlund methods

Published online by Cambridge University Press:  24 October 2008

Rüdiger Kiesel
Affiliation:
Universität Ulm, Abteilung Stochastik, D-89069 Ulm, Germany e-mail: kiesel@mathematik.uni-ulm.de

Abstract

Let (pn) be a sequence of real numbers with pn ~ R(n), R(.) a regulary varying function with index greater than −1/2. We prove the Hartman–Wintner law of the iterated logarithm for the corresponding (Jp) power series transform and generalized Nörlund transforms (Nβp) of sequences (Xn) of i.i.d. random variables with mean-zero and variance 1. We also identify the cluster sets.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]de Acosta, A.. A new proof of the Hartman–Wintner Law of the iterated logarithm. Ann. Prob. 11 (1983), 270276.CrossRefGoogle Scholar
[2]Bauer, H.. Wahrscheinlichkeitstheorie (Walter de Gruyter, 1991).Google Scholar
[3]Bingham, N. H., Goldie, C. M. and Teugels, J. L.. Regular variation (Cambridge University Press, 1987).CrossRefGoogle Scholar
[4]Bovier, A. and Picco, P.. A law of the iterated logarithm for random geometric series. Ann. Prob. 21 (1) (1993), 168184.CrossRefGoogle Scholar
[5]Chow, Y. S. and Teicher, H.. Iterated logarithm laws for weighted averages. Z. WT. verw. Geb. 26 (1973), 8794.CrossRefGoogle Scholar
[6]Chow, Y. S. and Teicher, H.. Probability theory (Springer Verlag, 1988).CrossRefGoogle Scholar
[7]Embrechts, P. and Maejima, M.. The central limit theorem for summability methods of i.i.d. random variables. Z. WT. verw. Geb. 68 (1984), 191204.CrossRefGoogle Scholar
[8]Feller, W.. An extension of the law of the iterated logarithm to variables without variance. J. Math. Mech. 18 (4) (1968), 343355.Google Scholar
[9]Hardy, G. H.. Divergent series (Oxford University Press, 1949).Google Scholar
[10]Horvath, L.. A note on the law of iterated logarithm for Abel sums. C.R. Math. Rep. Acad. Sci. Can. XV(5) (1993), 213217.Google Scholar
[11]Jakimovski, A. and Tietz, H.. Regularly varying functions and power series methods. J. Math. Anal. Appl. 73 (1980), 6584;CrossRefGoogle Scholar
Errata J. Math. Anal. Appl. 95 (1983), 597598.CrossRefGoogle Scholar
[12]Kiesel, R.. Taubersätze und starke Gesetze für Potenzreihenverfahren. Dissertation, Universität Ulm (1990).Google Scholar
[13]Kiesel, R.. Power series methods and almost sure convergence. Math. Proc. Camb. Phil. Soc. 113 (1993), 195204.CrossRefGoogle Scholar
[14]Kiesel, R.. General Nörlund transforms and power series methods. Math. Zat. 214 (1993), 273286.CrossRefGoogle Scholar
[15]Kiesel, R. and Stadtmüller, U.. Tauberian and convexity theorems for certain (N, p, q)-means. Can. Math. Bull. 46(5) (1994), 982994.CrossRefGoogle Scholar
[16]Lai, T. L.. Summability methods for independent identically distributed random variables. Proc. Amer. Math. Soc. 45 (1974), 253261.Google Scholar
[17]Seneta, E.. Regularly varying function. Lecture Notes in Mathematics, No. 508 (Springer Verlag, 1976).CrossRefGoogle Scholar
[18]Stadtmüller, U.. A note on the law of iterated logarithm for weighted sums of random variables. Ann. Stat. 12(1) (1984), 3544.Google Scholar
[19]Stout, W.. Almost sure convergence (Academic Press, 1974).Google Scholar
[20]Zygmund, A.. Trigonometric series. Vol. 1 (Cambridge University Press, 1968).Google Scholar