[1]Andrews, G. E.. Theheory of partitions. Encyclopedia Math. Appl. 2 (Addison-Wesley, Reading, Mass., 1976).

[2]Batyrev, V. V.. Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs. J. Eur. Math. Soc. 1 (1999), 5–33.

[3]Bejleri, D. and Zaimi, G.. The topology of equivariant Hilbert schemes, arXiv:1512.05774.

[4]Behrend, K.. Donaldson-Thomas type invariants via microlocal geometry. Ann. of Math. (2) 170 (2009), 1307–1338.

[5]Behrend, K. and Fantechi, B.. Symmetric obstruction theories and Hilbert schemes of points on threefolds, Algebra Number Theory 2 (2008), 313–345.

[6]Benini, F., Benvenuti, S. and Tachikawa, Y.. Webs of five-branes and *N* = 2 superconformal field theories. J. High Energy Phys. 9 (2009), 052.

[7]Bridgeland, T.. Equivalences of triangulated categories and Fourier–Mukai transforms. Bull. London. Math. Soc 131(1) (1999), 25–34.

[8]Bridgeland, T., King, A. and Reid, M.. The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), 535–554.

[9]Cox, D., Little, J. and Schenck, H.. Toric varieties. Graduate studies in Math. AMS, 124 (2011).

[10]Davison, B.. The critical CoHA of a quiver with potential. Quart. J. Math. 68(2) (2017), 635–703.

[11]Davison, B.. Purity of critical cohomology and Kac’s conjecture. Math. Res. Lett. 25(2) (2018), 469–488.

[12]Davison, B.. The integrality conjecture and the cohomology of preprojective stacks. arXiv:1602.02110

[13]Davison, B. and Meinhardt, S.. Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras. arXiv:1601.02479.

[14]Engel, J. and Reineke, M.. Smooth models of quiver moduli. Math. Z. 262(4) (2009), 817–848.

[15]Fujii, S. and Minabe, S.. A combinatorial study on quiver varieties. SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), 052.

[16]Ginzburg, V.. Calabi–Yau algebras. arXiv:math/0612139.

[17]Garvan, F., Kim, D. and Stanton, D.. Cranks and *t*-cores. Invent. Math. 101 (1990), 1–17.

[18]Gyenge, Á., Némethi, A. and Szendröi, B.. Euler characteristics of Hilbert schemes of points on simple surface singularities. European J. Math. 4 (2018), 439–524.

[19]Herschend, M. and Iyama, O.. Selfinjective quivers with potential and 2-representation-finite algebras. Composition Math. 147 (2011), 1885–1920.

[20]James, G. and Kerber, A.. The representation theory of the symmetric group. Encyclopedia Math. Appl. 16 (Addison-Wesley, Reading, Mass., 1981).

[21]Hong, J. and Kang, S.-J.. Introduction to quantum groups and crystal bases. Amer. Math. Soc. 42 (2002).

[22]Kwon, J.-H.. Affine crystal graphs and two-colored partitions. Letters in Mathematical Physics 75 (2006), 171–186.

[23]Katz, S., Morrison, D. and Plesser, R.. Enhanced gauge symmetry in Type II string theory. Nuclear Phys. B 477 (1996), 105–140.

[24]King, A. D.. Moduli of representations of finite-dimensional algebras. Quart. J. Math. 45 (1994), 515–530.

[25]Kontsevich, M. and Soibelman, Y.. Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants. Comm. Num. Th & Phys. 5(2) (2011), 231–352

[26]Maulik, D., Nekrasov, N., Okounkov, A. and Pandharipande, R.. Gromov–Witten theory and Donaldson–Thomas theory I. Composition Math. 142 (2006), 1263–1285.

[27]Mozgovoy, S.. Motivic Donaldson–Thomas invariants and McKay correspondence. arXiv:1107.6044.

[28]Mozgovoy, S. and Reineke, M.. On the noncommutative Donaldson–Thomas invariants arising from brane tilings. Adv. Math. 223 (2010), 1521–1544.

[29]Nakajima, H. and Ito, Y.. McKay correspondence and Hilbert schemes in dimension three. Topology 39 (2000), 1155–1191.

[30]Nakamura, I.. Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), 757–779.

[31]Reid, M.. La correspondance de McKay, Séminaire Bourbaki, Astérisque 276 (2002), 53–72.

[32]Young, B.. Generating functions for colored 3D Young diagrams and the Donaldson–Thomas invariants of orbifolds, with an appendix by Bryan, J.. Duke Math. J. 152 (2010), 115–153.