Skip to main content Accessibility help
×
Home

Enumerating coloured partitions in 2 and 3 dimensions

  • BEN DAVISON (a1), JARED ONGARO (a2) and BALÁZS SZENDRŐI (a3)

Abstract

We study generating functions of ordinary and plane partitions coloured by the action of a finite subgroup of the corresponding special linear group. After reviewing known results for the case of ordinary partitions, we formulate a conjecture concerning a basic factorisation property of the generating function of coloured plane partitions that can be thought of as an orbifold analogue of a conjecture of Maulik et al., now a theorem, in three-dimensional Donaldson–Thomas theory. We study natural quantisations of the generating functions arising from geometry, discuss a quantised version of our conjecture, and prove a positivity result for the quantised coloured plane partition function under a geometric assumption.

Copyright

References

Hide All
[1]Andrews, G. E.. Theheory of partitions. Encyclopedia Math. Appl. 2 (Addison-Wesley, Reading, Mass., 1976).
[2]Batyrev, V. V.. Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs. J. Eur. Math. Soc. 1 (1999), 533.
[3]Bejleri, D. and Zaimi, G.. The topology of equivariant Hilbert schemes, arXiv:1512.05774.
[4]Behrend, K.. Donaldson-Thomas type invariants via microlocal geometry. Ann. of Math. (2) 170 (2009), 13071338.
[5]Behrend, K. and Fantechi, B.. Symmetric obstruction theories and Hilbert schemes of points on threefolds, Algebra Number Theory 2 (2008), 313345.
[6]Benini, F., Benvenuti, S. and Tachikawa, Y.. Webs of five-branes and N = 2 superconformal field theories. J. High Energy Phys. 9 (2009), 052.
[7]Bridgeland, T.. Equivalences of triangulated categories and Fourier–Mukai transforms. Bull. London. Math. Soc 131(1) (1999), 2534.
[8]Bridgeland, T., King, A. and Reid, M.. The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), 535554.
[9]Cox, D., Little, J. and Schenck, H.. Toric varieties. Graduate studies in Math. AMS, 124 (2011).
[10]Davison, B.. The critical CoHA of a quiver with potential. Quart. J. Math. 68(2) (2017), 635703.
[11]Davison, B.. Purity of critical cohomology and Kac’s conjecture. Math. Res. Lett. 25(2) (2018), 469488.
[12]Davison, B.. The integrality conjecture and the cohomology of preprojective stacks. arXiv:1602.02110
[13]Davison, B. and Meinhardt, S.. Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras. arXiv:1601.02479.
[14]Engel, J. and Reineke, M.. Smooth models of quiver moduli. Math. Z. 262(4) (2009), 817848.
[15]Fujii, S. and Minabe, S.. A combinatorial study on quiver varieties. SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), 052.
[16]Ginzburg, V.. Calabi–Yau algebras. arXiv:math/0612139.
[17]Garvan, F., Kim, D. and Stanton, D.. Cranks and t-cores. Invent. Math. 101 (1990), 117.
[18]Gyenge, Á., Némethi, A. and Szendröi, B.. Euler characteristics of Hilbert schemes of points on simple surface singularities. European J. Math. 4 (2018), 439524.
[19]Herschend, M. and Iyama, O.. Selfinjective quivers with potential and 2-representation-finite algebras. Composition Math. 147 (2011), 18851920.
[20]James, G. and Kerber, A.. The representation theory of the symmetric group. Encyclopedia Math. Appl. 16 (Addison-Wesley, Reading, Mass., 1981).
[21]Hong, J. and Kang, S.-J.. Introduction to quantum groups and crystal bases. Amer. Math. Soc. 42 (2002).
[22]Kwon, J.-H.. Affine crystal graphs and two-colored partitions. Letters in Mathematical Physics 75 (2006), 171186.
[23]Katz, S., Morrison, D. and Plesser, R.. Enhanced gauge symmetry in Type II string theory. Nuclear Phys. B 477 (1996), 105140.
[24]King, A. D.. Moduli of representations of finite-dimensional algebras. Quart. J. Math. 45 (1994), 515530.
[25]Kontsevich, M. and Soibelman, Y.. Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants. Comm. Num. Th & Phys. 5(2) (2011), 231352
[26]Maulik, D., Nekrasov, N., Okounkov, A. and Pandharipande, R.. Gromov–Witten theory and Donaldson–Thomas theory I. Composition Math. 142 (2006), 12631285.
[27]Mozgovoy, S.. Motivic Donaldson–Thomas invariants and McKay correspondence. arXiv:1107.6044.
[28]Mozgovoy, S. and Reineke, M.. On the noncommutative Donaldson–Thomas invariants arising from brane tilings. Adv. Math. 223 (2010), 15211544.
[29]Nakajima, H. and Ito, Y.. McKay correspondence and Hilbert schemes in dimension three. Topology 39 (2000), 11551191.
[30]Nakamura, I.. Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), 757779.
[31]Reid, M.. La correspondance de McKay, Séminaire Bourbaki, Astérisque 276 (2002), 5372.
[32]Young, B.. Generating functions for colored 3D Young diagrams and the Donaldson–Thomas invariants of orbifolds, with an appendix by Bryan, J.. Duke Math. J. 152 (2010), 115153.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed