Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T14:38:45.015Z Has data issue: false hasContentIssue false

Clifford monoid presentations

Published online by Cambridge University Press:  24 October 2008

Pedro V. Silva
Affiliation:
Departamento de Matemática, Universidade do Porto, 4000 Porto, Portugal Department of Mathematics, University of Glasgow, Glasgow G12 8QW

Abstract

Some decidability results for presentations in the variety of Clifford monoids are obtained. These results are applied in the solution of the E-unitary problem for presentations in the variety of inverse monoids.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adjan, S. I.. On algorithmic problems in effectively complete classes of groups. Dokl. Akad. Nauk SSSR 123 (1958), 1316.Google Scholar
[2]Boone, W. W.. The word problem. Ann. of Math. 70 (1959), 207265.CrossRefGoogle Scholar
[3]Cohen, D.. Combinatorial Group Theory: a Topological Approach (Cambndge University Press, 1989).CrossRefGoogle Scholar
[4]Howie, J. M.. Introduction to Semigroup Theory (Academic Press, 1976).Google Scholar
[5]Liber, S. A.. On free algebras of normal closures of varieties. In Ordered Sets and Lattices (Saratov University, 1974), pp. 5153.Google Scholar
[6]Magnus, W.. Über diskontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitssatz). J. Reine Angew. Math. 163 (1930), 141165.CrossRefGoogle Scholar
[7]Magnus, W.. Das Identitätsproblem für Gruppen mit einer definierenden Relation. Math. Ann. 106 (1932). 295307.CrossRefGoogle Scholar
[8]Magnus, W., Karrass, A. and Solitar, D.. Combinatorial Group Theory (Wiley, 1966).Google Scholar
[9]Margolis, S., Meakin, J. and Stephen, J.. Some decision problems for inverse monoid presentations. In Semigroups and their Applications (editors Goberstein, S. M. and Higgins, P. M.) (P. Reidel, 1987), pp. 99110.CrossRefGoogle Scholar
[10]Novikov, P. S.. On the algorithmic unsolvability of the word problem in group theory. Trudy Mat. Inst. Steklov 44 (1955), 143.Google Scholar
[11]Petrich, M.. Inverse Semigroups (Wiley, 1984).Google Scholar
[12]Rabin, M. O.. Recursive unsolvability of group theoretic problems. Ann. of Math. 67 (1958), 172174.CrossRefGoogle Scholar