Skip to main content Accessibility help

Absolute curvatures in integral geometry

  • Adrian J. Baddeley (a1)


Surface integrals of curvature arise naturally in integral geometry and geometrical probability, most often in connection with the Quermassintegrale or cross-section integrals of convex bodies. They enjoy many desirable properties, such as the ability to be determined by summing or averaging over lower-dimensional sections or projections. In fact the Quermassintegrale are the only functionals of convex bodies to meet certain, quite reasonable, requirements. The conclusion has often been drawn, especially in practical applications, that the Quermassintegrale and their associated curvature integrals have a canonical status to the exclusion of all other quantities.



Hide All
(1)Averback, P. and Baddeley, A. Spectrum of geometrical changes in human testicular disease. (In preparation.)
(2)Averback, P. and Wight, D.Seminiferous tubule hypercurvature: a newly-recognised common syndrome of human male infertility. Lancet, 27 01 (1979), pp. 181183.
(3)Baddeley, A. and Averback, P. Stereological theory and practical measures of biological tubular structures. (Submitted for publication.)
(4)Blaschke, W.Vorlesungen über Integralgeometrie. (Leipzig, Teubner, 1936). (Reprinted Chelsea, N.Y. 1949).
(5)Bonnesen, T. and Fenchel, W.Theorie der konvexen Körper. Ergebnisse der Math. 3 (Berlin, Springer, 1934).
(6)Cartan, E. La théorie des groupes finis et continus et la géometrie différentielle traitées par la méthode du repère mobile. Cahiers Scientifiques, XVIII. (Paris, Gauthier-Villars, 1951).
(7)Chern, S.-S.On the kinematic formula in the Euclidean space of N dimensions. Amer. J. Math. 74 (1952), 227236.
(8)De Hoff, R. T.The quantitative estimation of mean surface curvature. Trans. Metall. Soc. AIME 239 (1971), 617621.
(9)De Hoff, R. T. Stereological uses of the area tangent count. In Geometrical probability and biological structures. (Heidelberg, Springer-Verlag lecture notes in Biomathematics, no. 23 (1978).
(10)Federer, H.Curvature measures. Trans. Amer. Math. Soc. 93 (1959), 418491.
(11)Federer, H.Geometric measure theory. (Springer-Verlag, 1969).
(12)Groemer, H.On the extension of additive functionals on classes of convex sets. Pacific J. Math. 75 (1978), 397410.
(13)Hadwiger, H.Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. (Berlin, Springer-Verlag, 1957).
(14)Hadwiger, H.Normale Körper im euklidischen Raum und ihre topologischen und metrischen Eigenschaften. Math. Z. 71 (1959), 121140.
(15)Matheron, G.La formule de Steiner pour les érosions. J. Appl. Prob. 15 (1978), 126135.
(16)Miles, R. E.Direct derivations of certain surface integral formulae for the mean projections of a convex set. Adv. Appl. Prob. 7 (1975), 818829.
(17)Miles, R. E.Multidimensional perspectives on stereology. J. Microsc. 95 (1972), 181185.
(18)Miles, R. E. and Davy, P. J.Precise and general conditions for the validity of a comprehensive set of stereological fundamental formulae. J. Microsc. 107 (1976), 211226.
(19)Minkowski, H.Volumen und Oberfläche. Math. Ann. 57 (1903), 447495.
(20)Moran, P. A. P.The probabilistic basis of stereology. Suppl. Adv. Appl. Prob. (1972), 6991.
(21)Santaló, L. A. Mean values and curvatures. In Stochastic Geometry, ed. Harding, E. F. and Kendall, D. G. (Wiley, 1974).
(22)Santaló, L. A.Integral geometry and geometric probability. Addison-Wesley Encyclopaedia of Mathematics series, vol. 1. (1976)
(23)Schreiber, M.Differential forms: a heuristic introduction. (Springer-Verlag, 1977).
(24)Spivak, M.Differential Geometry, vol. ii. (Boston, Mass., Publish or Perish, 1970).

Absolute curvatures in integral geometry

  • Adrian J. Baddeley (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed