Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T16:28:04.882Z Has data issue: false hasContentIssue false

Ubiquity and large intersections properties under digit frequencies constraints

Published online by Cambridge University Press:  01 November 2008

JULIEN BARRAL
Affiliation:
Projet SISYPHE - INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France. e-mail: julien.barral@inria.fr
STÉPHANE SEURET
Affiliation:
LAMA - CNRS UMR 8050 - Université Paris-Est - UFR Sciences et Technologie 61, avenue du Général de Gaulle, 94010 Créteil Cedex, France. e-mail: Seuret@univ-paris12.fr

Abstract

We are interested in two properties of real numbers: the first one is the property of being well-approximated by some dense family of real numbers {xn}n≥1, such as rational numbers and more generally algebraic numbers, and the second one is the property of having given digit frequencies in some b-adic expansion.

We combine these two ways of classifying the real numbers, in order to provide a finer classification. We exhibit sets S of points x which are approximated at a given rate by some of the {xn}n, those xn being selected according to their digit frequencies. We compute the Hausdorff dimension of any countable intersection of such sets S, and prove that these sets enjoy the so-called large intersection property.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baker, A. and Schmidt, W. M.Diophantine approximation and Hausdorff dimension. Proc. London Math. Soc. 21 (1970), 111.Google Scholar
[2]Barral, J. and Seuret, S.Sums of Dirac masses and conditioned ubiquity. C. R. Acad. Sci. Paris, Ser. I 339 (2004), 787792.CrossRefGoogle Scholar
[3]Barral, J. and Seuret, S.Heterogeneous ubiquitous systems and Hausdorff dimension in. Bull. Brazilian Math. Soc. 38 (3) (2007), 467515.Google Scholar
[4]Beresnevich, V., Dickinson, H. and Velani, S.Measure theoretic laws for limsup sets. Mem. Amer. Math. Soc. 179, number 840 (2006), 191.Google Scholar
[5]Beresnevich, V. and Velani, S.A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. Math. 164 (2006), 971992.CrossRefGoogle Scholar
[6]Bernik, V. I. and Tishchenko, K. I.Integral polynomials with an overfall of the coefficient values and Wirsing's theorem. Dokl. Akad. Nauk Belarusi 37 (1993), 911.Google Scholar
[7]Besicovitch, A. S.On the sum of digits of real numbers represented in the dyadic system. Math. Ann. 110 (1934), 321330.CrossRefGoogle Scholar
[8]Brown, G., Michon, G. and Peyrière, J.On the multifractal analysis of measures. J. Stat. Phys. 66 (1992), 775790.CrossRefGoogle Scholar
[9]Bugeaud, Y.An inhomogeneous Jarnik theorem. J. Anal. Math. 92 (2004), 327349.Google Scholar
[10]Bugeaud, Y.Intersective sets and Diophantine approximation. Mich. Math. J. 52 (2004), 667682.CrossRefGoogle Scholar
[11]Bugeaud, Y. and Teulié, O.Approximation d'un nombre réel par des nombres algébriques de degré donné. Acta Arith. 93 (2000), 7786.CrossRefGoogle Scholar
[12]Bugeaud, Y.Diophantine approximation and Cantor sets. Math. Ann. 341 (2008), 677684.CrossRefGoogle Scholar
[13]Cassels, J. W. S.An Introduction to Diophantine Approximation. (Cambridge University Press 1957).Google Scholar
[14]Dodson, M. M.Exceptional sets in dynamical systems and Diophantine approximation. Rigidity in Dynamics and Geometry (Cambridge, 2000), 7798, (Springer, 2002).Google Scholar
[15]Dodson, M. M., Rynne, B. P. and Vickers, J. A. G.Diophantine approximation and a lower bound for Hausdorff dimension. Mathematika 37 (1990), 5973.CrossRefGoogle Scholar
[16]Dodson, M. M., Melián, M. V., Pestana, D. and Vélani, S. L., Patterson measure and Ubiquity. Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), 3760.Google Scholar
[17]Durand, A.Ubiquitous systems and metric number theory. Adv. Math. 218 (2) (2008), 368394.CrossRefGoogle Scholar
[18]Eggleston, H.The fractonial dimension of a set defined by decimal properties. Quart. J. Math. Oxford Ser. 20 (1949), 3136.Google Scholar
[19]Falconer, K. J.Classes of sets with large intersection. Mathematika 32 (1985), 191205.CrossRefGoogle Scholar
[20]Falconer, K. J.Sets with large intersection properties. J. London Math. Soc. (2)(49) (1994), 267280.Google Scholar
[21]Falconer, K. J.Techniques in Fractal Geometry. (Wiley, 1997).Google Scholar
[22]Falconer, K. J.Representation of families of sets by measures, dimension spectra and Diophantine approximation. Math. Proc. Camb. Phil. Soc. 128 (2000), 111121.Google Scholar
[23]Hardy, G. H. and Wright, E. M.An Introduction to the Theory of Numbers. (Oxford University Press, 1978).Google Scholar
[24]Hutchinson, J. E.Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713747.CrossRefGoogle Scholar
[25]Jaffard, S.The multifractal nature of Lévy processes. Probab. Theory Relat. Fields 114 (1999), 207227.CrossRefGoogle Scholar
[26]Jaffard, S.On lacunary wavelet series. Ann. Appl. Prob. 10 (2000), 313329.CrossRefGoogle Scholar
[27]Jarnik, V.Diophantischen approximationen und Hausdorffsches mass. Mat. Sbornik 36 (1929), 371381.Google Scholar
[28]Kingman, J. F.CCompletely random measures. Pacific J. Math. 21 (1967), 5978.Google Scholar
[29]Levesley, J., Salp, C. and Velani, S.On a problem of K. Mahler: Diophantine approximation and Cantor sets. Math. Ann. 338 (1) (2007), 97118Google Scholar
[30]Ma, J.-H., Wen, Z.-Y. and Wu, J.Besicovitch subsets of self-similar sets. Ann. Inst. Fourier, 52 (4) (2002), 10611074.CrossRefGoogle Scholar
[31]Mattila, P., Geometry of Sets and Measures in Euclidian Spaces. Cambridge Studies in Adv. Math. (Cambridge University Press 1995).CrossRefGoogle Scholar
[32]Shepp, L. A.Covering the line with random intervals. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 23 (1972), 163170.CrossRefGoogle Scholar