Skip to main content Accessibility help
×
Home

Periodic cohomology and subgroups with bounded Bredon cohomological dimension

Published online by Cambridge University Press:  01 March 2008


JANG HYUN JO
Affiliation:
Research Institute for Basic Science, Korea University, Seoul 136-701, Korea. e-mail: jhjo@sogang.ac.kr
BRITA E. A. NUCINKIS
Affiliation:
School of Mathematics, University of Southampton, SO17 1BJ. e-mail: B.E.A.Nucinkis@soton.ac.uk
Corresponding

Abstract

Mislin and Talelli showed that a torsion-free group in with periodic cohomology after some steps has finite cohomological dimension. In this note we look at similar questions for groups with torsion by considering Bredon cohomology. In particular we show that every elementary amenable group acting freely and properly on some × Sm admits a finite dimensional model for G.


Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Bestvina, M. Questions in geometric group theory. http://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf.Google Scholar
[2]Bieri, R. Homological dimension of discrete groups. Queen Mary College Mathematics Notes, 2nd ed. (1982).Google Scholar
[3]Flores, R. J. and Nucinkis, B. E. A.. On Bredon homology of elementary amenable groups. Proc. Amer. Math. Soc. 135 (2007), 511.CrossRefGoogle Scholar
[4]Hillman, J. A.Elementary amenable groups and 4-manifolds with Euler characteristic 0. J. Aust. Math. Soc. Ser. A 50 (1991), 160170.CrossRefGoogle Scholar
[5]Jo, J. H.Multiple complexes and gaps in Farrell cohomology. J. Pure Appl. Algebra 194 (2004), 147158.CrossRefGoogle Scholar
[6]Kropholler, P. H., Linnell, P. A. and Moody, J. A.. Applications of a new K-theoritic theorem to soluble group rings. Proc. Amer. Math. Soc. 104 (3), (1988), 675684.Google Scholar
[7]Kropholler, P. H.On groups of type FP. J. Pure Appl. Algebra 90 (1993), 5567.CrossRefGoogle Scholar
[8]Kropholler, P. H. and Mislin, G.. Groups acting on finite dimensional spaces with finite stablizers. Comment. Math. Helv. 73 (1998), 122136.CrossRefGoogle Scholar
[9]Lück, W. Transformation groups and algebraic K-theory. Lecture Notes in Math. 149 (Springer, 1989).Google Scholar
[10]Lück, W.The type of the classifying space for a family of subgroups. J. Pure Appl. Algebra 149 (2000), 177203.CrossRefGoogle Scholar
[11]Martinez–Pérez, C.A spectral sequence in Bredon (co)homology. J. Pure Appl. Algebra 176 (2002), 161173.CrossRefGoogle Scholar
[12]Mislin, G. Equivariant K-homology of classifying spaces for proper actions, in Proper group actions and the Baum–Connes conjecture. Adv. Courses Math. CRM Barcelona (Birkhauser, 2003), 1–78.Google Scholar
[13]Mislin, G. and Talelli, O.. On groups which act freely and properly on finite dimensional homotopy spheres. in Computational and geometric aspects of modern algebra (Edinburgh, 1998). London Math. Soc. Lecture Note Ser. 275 (Cambridge University Press, 2000), 208–228.Google Scholar
[14]Nucinkis, B. E. A.On dimensions in Bredon homology. Homology, Homotopy Appl. 6 (2004), no. 1, 3347.CrossRefGoogle Scholar
[15]Petrosyan, N. Periodicity and jumps in cohomology of R-torsion-free groups, preprint (2005).Google Scholar
[16]Stammbach, U.On the weak homological dimension of the group algebra of soluble groups. J. London Math. Soc. (2) 2 (1970), 567570.CrossRefGoogle Scholar
[17]Talelli, O.On cohomological periodicity for infinite groups. Comment. Math. Helv. 55 (1980), 8593.CrossRefGoogle Scholar
[18]Talelli, O.. Periodic cohomology and free and proper actions on ℝn × S m. London Math. Soc. Lecture Note Ser. 261, Groups St. Andrews 1997 in Bath, II. 261 (1997), 701–717.Google Scholar
[19]Talelli, O.Periodicity in group cohomology and complete resolutions. Bull. London Math. Soc. 37 (2005), 547554.CrossRefGoogle Scholar
[20]Talelli, O. On groups of type Φ, preprint (2005).Google Scholar
[21]Venkov, B. B.On homologies of groups of units in division algebras. Trudy Mat. Inst. Steklov. 80 (1965), 6689. [English transtlation: Proc. Steklov Inst. Math. 80 (1965), 73–100.]Google Scholar
[22]Wehrfritz, B. A. F.On elementary amenable groups of finite Hirsch number. J. Austral. Math. Soc. Series A. 58 (1995), 219221.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 16 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-nf2kx Total loading time: 0.217 Render date: 2020-12-05T23:14:09.521Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 23:01:39 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Periodic cohomology and subgroups with bounded Bredon cohomological dimension
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Periodic cohomology and subgroups with bounded Bredon cohomological dimension
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Periodic cohomology and subgroups with bounded Bredon cohomological dimension
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *