Hostname: page-component-cc8bf7c57-77pjf Total loading time: 0 Render date: 2024-12-11T22:20:29.788Z Has data issue: false hasContentIssue false

Hyperbolic polygons and NEC groups

Published online by Cambridge University Press:  24 October 2008

J. J. Etayo
Affiliation:
Departamento de Algebra, Facultad de Ciencias Matemáticas, Universidad Complutense, 28040-Madrid, Spain
E. Martínez
Affiliation:
Departamento de Matemáticas Fundamentales, Facultad de Ciencias, U.N.E.D., 28040-Madrid, Spain

Extract

Beardon [1] gave a procedure for constructing a polygon with prescribed angles. For each ordered set of angles Beardon's polygon is unique up to congruence. The polygon obtained this way has an inscribed circle. It is possible to obtain by means of these polygons a fundamental region for a non-Euclidean crystallographic (NEC) group with a given signature having equal angles in each of the cycles: see [5]. In [5] the minimal number of sides of a convex fundamental region of an NEC group is calculated, and regions are explicitly obtained achieving the bound.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Beardon, A. F.. Hyperbolic polygons and Fuchsian groups. J. London Math. Soc. (2)20 (1979), 247254.CrossRefGoogle Scholar
[2]Beardon, A. F.. The Geometry of Discrete Groups. Graduate Texts in Math. no. 91 (Springer-Verlag, 1983).CrossRefGoogle Scholar
[3]Macbeath, A. M.. The classification of non-Euclidean plane crystallographic groups. Canad. J. Math. 19 (1967), 11921205.CrossRefGoogle Scholar
[4]Macbeath, A. M. and Singerman, D.. Spaces of subgroups and Teichmüller space. Proc. London Math. Soc. (3) 31(1975), 211256.CrossRefGoogle Scholar
[5]Martínez, E.. Convex fundamental regions for N.E.C. groups. Arch. Math. (Basel) 47 (1986), 457464.CrossRefGoogle Scholar
[6]Singerman, P.. Symmetries of Riemann surfaces with large automorphism group. Math. Ann. 210 (1974), 1732.CrossRefGoogle Scholar
[7]Singerman, D.. On the structure of non-Euclidean crystallographic groups. Proc. Cambridge Philos. Soc. 76 (1974), 233240.CrossRefGoogle Scholar
[8]Wilkie, H. C.. On non-Euclidean crystallographic groups. Math. Z. 91(1966), 87102.CrossRefGoogle Scholar
[9]Zieschang, H., Vogt, E. and Coldewey, H. D.. Surfaces and Planar Discontinuous Groups. Lecture Notes in Math. vol. 835 (Springer-Verlag, 1980).CrossRefGoogle Scholar