Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-15T06:54:31.775Z Has data issue: false hasContentIssue false

Volume Filling Effect in Modelling Chemotaxis

Published online by Cambridge University Press:  03 February 2010

D. Wrzosek*
Affiliation:
Institute of Applied Mathematics and Mechanics, Warsaw University Banacha 2, 02-097 Warszawa, Poland
*
Get access

Abstract

The oriented movement of biological cells or organisms in response to a chemical gradient is called chemotaxis. The most interesting situation related to self-organization phenomenon takes place when the cells detect and response to a chemical which is secreted by themselves. Since pioneering works of Patlak (1953) and Keller and Segel (1970) many particularized models have been proposed to describe the aggregation phase of this process. Most of efforts were concentrated, so far, on mathematical models in which the formation of aggregate is interpreted as finite time blow-up of cell density. In recently proposed models cells are no more treated as point masses and their finite volume is accounted for. Thus, arbitrary high cell densities are precluded in such description and a threshold value for cells density is a priori assumed. Different modeling approaches based on this assumption lead to a class of quasilinear parabolic systems with strong nonlinearities including degenerate or singular diffusion. We give a survey of analytical results on the existence and uniqueness of global-in-time solutions, their convergence to stationary states and on a possibility of reaching the density threshold by a solution. Unsolved problems are pointed as well.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R. A. Adams. Sobolev spaces. Academic Press, New York, 1975.
Alber, M., Gejji, R. Kaźmierczak, B.. Existence of global solutions of a macroscopic model of cellular motion in a chemotactic field . Applied Mathematics Letters., 22 (2009), No. 11, 16451648 CrossRefGoogle Scholar
Ainsebaa, B., Bendahmaneb, M., Noussairc, A.. A reaction–diffusion system modeling predator–prey with prey-taxis . Nonlinear Anal. R. World Appl., 9 (2008), No. 5, 20862105. CrossRefGoogle Scholar
Amann, H.. Dynamic theory of quasilinear parabolic systems III. Global existence. Math. Z., 202 (1989), No. 2, 219250. Google Scholar
H. Amann. Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems.9–126, in: (H. Triebel, H.J. Schmeisser., eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte Math., 133, Teubner, Stuttgart, 1993.
D. G. Aronson. The porous medium equation., in: (A.Fasano, M.Primicerio.,eds.) Some Problems in Nonlinear Diffusion. Lecture Notes in Mathematics., 1224, Springer, Berlin, 1986.
Bendahmane, M., Karlsen, K. H., Urbano, J. M.. On a two-sidedly degenerate chemotaxis model with volume-filling effect. Math. Models Methods Appl. Sci., 17 (2007), No. 2, 783804. CrossRefGoogle Scholar
Biler, P.. Local and global solvability of some parabolic systems modelling chemotaxis . Adv. Math. Sci. Appl. Nachr., 195 (1998), No. 8, 76114 Google Scholar
Brenner, M. P., Levitov, L. S. and Budrene, E. O.. Physical mechanism for chemotactic pattern formation by bacteria. Biophys. J., 74 (1998), No. 4, 16771693. CrossRefGoogle ScholarPubMed
Byrne, H. M. Owen, M. R.. A new interpretation of the Keller-Segel model based on multiphase modelling . J. Math. Biol., 49 (2004), No. 6, 604626 CrossRefGoogle ScholarPubMed
Chalub, F. A. C. C. Rodrigues, J. F.. A class of kinetic models for chemotaxis with threshold to prevent overcrowding . Portugaliae Math., 26 (2006), No. 2, 227250 Google Scholar
Calvez, V. Carillo, J. A.. Volume effects in the KellerSegel model: energy estimates preventing blow-up . J. Math. Pures Appl., 86 (2006), No. 2, 155175 CrossRefGoogle Scholar
T. Cieślak . The solutions of the quasilinear Keller-Segel system with the volume filling effect do not blow up whenever the Lyapunov functional is bounded from below. 127–132, in: Self-similar solutions of nonlinear PDE, Banach Center Publ., 74, Warsaw, 2006.
Cieślak, T.. Quasilinear nonuniformly parabolic system modelling chemotaxis . J. Math. Anal. Appl., 326 (2007), No. 2, 14101426 CrossRefGoogle Scholar
Cieślak, T. Morales-Rodrigo, C.. Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions . Topol. Methods Nonlinear Anal., 29 (2007), No. 2, 361381 Google Scholar
Cieślak, T. Winkler, M.. Finite-time blow-up in a quasilinear system of chemotaxis . Nonlinearity., 21 (2008), No. 5, 10571076 CrossRefGoogle Scholar
Choi, Y. S. Wang, Z. A.. Prevention of blow up by fast diffusion in chemotaxis . J. Math. Anal. Appl., 362 (2010), No. 2, 553-564 CrossRefGoogle Scholar
DiFrancesco, M. Rosado, J.. Fully parabolic Keller-Segel model for chemotaxis with prevention of overcrowding . Nonlinearity., 21 (2008), No. 11, 27152730 CrossRefGoogle Scholar
Dolak, Y. Schmeiser, C.. The Keller-Segel model with logistic sensitivity function and small diffusivity . SIAM J. Appl. Math., 66 (2005), No. 1 , 286308 CrossRefGoogle Scholar
Feireisl, E., Laurençot, Ph. Petzeltova, H.. On convergence to equilibria for the Keller-Segel chemotaxis model . J.Diff.Equations., 236 (2007), No. 2, 551569 CrossRefGoogle Scholar
Gajewski, H. Zacharias, K.. Global behavior of a reaction-diffusion system modelling chemotaxis . Math. Nachr., 195 (1998), No. 1 , 77114 CrossRefGoogle Scholar
D. Henry. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1981.
Herrero, M. A. Velázquez, J. J. L. A blow-up mechanism for a chemotaxis model . Ann. Scuola Norm. Sup. Pisa., 24 (1997), No. 4, 633683 Google Scholar
Herrero, M. A. Velázquez, J. J. L. Chemotactic collapse for the Keller-Segel model . J. Math. Biol., 35 (1996), No. 2, 583623 CrossRefGoogle ScholarPubMed
Hillen, T. Painter, K. J.. A user’s guide to PDE models for chemotaxis . J. Math. Biol., 58 (2009), No. 1–2, 183217 CrossRefGoogle ScholarPubMed
Hillen, T. Painter, K.. Global existence for a parabolic chemotaxis model with prevention of overcrowding . Adv. Appl. Math., 26 (2001), No. 4, 280301 CrossRefGoogle Scholar
Horstmann, D.. Lyapunov functions and L p ;-estimates for a class of reaction-diffusion systems . Colloq. Math., 87 (2001), No. 1 , 113127 CrossRefGoogle Scholar
Horstmann, D.. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I . Jahresber. Deutsch. Math.-Verein., 105 (2003), No. 3, 103165 Google Scholar
Horstmann, D.. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I . Jahresber. Deutsch. Math.-Verein., 106 (2004), No. 2, 5169 Google Scholar
Jiang, J. Zhang, Y.. On Convergence to equilibria for a Chemotaxis Model with Volume filling effect . Asymptotic Analysis., 65 (2009), No. 1–2, 79102 Google Scholar
Keller, E. and Segel, L.. Initiation of slime mold aggregation viewed as an instability . J. Theor. Biology. 26 (1970), No. 3, 399415. CrossRefGoogle ScholarPubMed
Kowalczyk, R., Gamba, A. and Preciosi, L.. On the stability of homogeneous solutions to some aggregation models . Discrete Contin. Dynam. Systems-Series B. 4 (2004), No. 1 , 204220. Google Scholar
Ph. Laurençot, D. Wrzosek. A chemotaxis model with threshold density and degenerate diffusion. 273-290 in: Progress in Nonlinear Differential Equations and Their Applications., 64, Birkhäuser, Basel, 2005.
J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969.
Lushnikov, P. M., Chen, N. and Alber, M.. Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact . Phys. Rev. E., 78 (2008), No. 6, 061904. CrossRefGoogle ScholarPubMed
Nagai, T.. Blow-up of radially symetric solutions to a chemotaxis system . Adv. Math. Sci. Appl., 5 (1995), No. 2, 581601 Google Scholar
Nagai, T., Senba, T. Suzuki, T.. Chemotaxis collapse in a parabolic system of mathematical biology . Hiroshima Math. J., 30 (2000), No. 3, 463497 Google Scholar
Osaki, K. Yagi, A.. Finite dimensional attractors for one dimensional Keller-Segel equations . Funkcial. Ekvac., 44 (2001), No. 3, 441469 Google Scholar
Osaki, K., Yagi, A.. Global existence for a chemotaxis-growth system in ℝ2 . Adv. Math. Sci. Appl., 12 (2002), No. 2, 587606. Google Scholar
Osaki, K., Tsujikawa, T., Yagi, A. Mimura, M.. Exponential attractor for a chemotaxis-growth system of equations . Nonlinear Anal., 51 (2002), No. 1 , 119144 CrossRefGoogle Scholar
Painter, K. Hillen, T. Volume-filling and quorum-sensing in models for chemosensitive movement . Canadian Appl. Math. Q., 10 (2002), No. 4, 501543 Google Scholar
Patlak, C. S.. Random walk with persistence and external bias . Bull. Math. Biol. Biophys., 15 (1953), No. 3, 311338 CrossRefGoogle Scholar
Perthame, B. Dalibard, A. -L.. Existence of solutions of the hyperbolic Keller-Segel model . Trans. Amer. Math. Soc., 361 (2008), No. 5, 23192335 CrossRefGoogle Scholar
Potapov, A. B. Hillen, T.. Metastability in Chemotaxis Models . J. Dyn. Diff. Eq., 17 (2005), No. 2, 293-330 CrossRefGoogle Scholar
Schaaf, R.. Stationary solutions of Chemotaxis systems . Trans. Am. Math. Soc., 292 (1985), No. 2, 531-556 CrossRefGoogle Scholar
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer- Verlag, New York, 1988.
Velázquez, J. J. L. Point dynamics in a singular limit of the Keller-Segel model 1: motion of the concentration regions . SIAM J. Appl. Math., 64 (2004), No. 4, 11981223 CrossRefGoogle Scholar
Winkler, M.. Does a volume filling effect always prevent chemotactic colapse . Math. Meth. Appl. Sci., 33 (2010), No. 1 , 1224 Google Scholar
Wang, Z.A. Hillen, T.. Classical solutions and pattern formation for a volume filling chemotaxis model . Chaos., 17 (2007), No. 3, 037108037121 CrossRefGoogle ScholarPubMed
Wrzosek, D.. Global attractor for a chemotaxis model with prevention of overcrowding . Nonlinear Anal. TMA., 59 (2004), No. 8, 12931310 CrossRefGoogle Scholar
Wrzosek, D.. Long time behaviour of solutions to a chemotaxis model with volume filling effect . Proc. Roy. Soc. Edinburgh., 136A (2006), No. 2, 431444 CrossRefGoogle Scholar
D. Wrzosek. Chemotaxis models with a threshold cell density. in: Parabolic and Navier-Stokes equations. Part 2, 553–566, Banach Center Publ., 81, Warsaw, 2008.
D. Wrzosek. Model of chemotaxis with threshold density and singular diffusion. Nonlinear Anal. TMA.. to appear.
Y. Zhang, S. Zheng. Asymptotic Behavior of Solutions to a Quasilinear Nonuniform Parabolic System Modelling Chemotaxis. J. Diff. Equations. in press.