Skip to main content Accessibility help
×
Home

Tridiagonal Substitution Hamiltonians

  • M. Mei (a1) and W. Yessen (a2)

Abstract

We consider a family of discrete Jacobi operators on the one-dimensional integer lattice with Laplacian and potential terms modulated by a primitive invertible two-letter substitution. We investigate the spectrum and the spectral type, the fractal structure and fractal dimensions of the spectrum, exact dimensionality of the integrated density of states, and the gap structure. We present a review of previous results, some applications, and open problems. Our investigation is based largely on the dynamics of trace maps. This work is an extension of similar results on Schrödinger operators, although some of the results that we obtain differ qualitatively and quantitatively from those for the Schrödinger operators. The nontrivialities of this extension lie in the dynamics of the associated trace map as one attempts to extend the trace map formalism from the Schrödinger cocycle to the Jacobi one. In fact, the Jacobi operators considered here are, in a sense, a test item, as many other models can be attacked via the same techniques, and we present an extensive discussion on this.

Copyright

Corresponding author

Supported by the Michele T. Myers PD Account through Denison University. Part of the work presented herein was supported by DMS-0901627 (PI: A. Gorodetski)

References

Hide All
[1] Astels, S.. Cantor sets and numbers with restricted partial quotients. Trans. Amer. Math. Soc., 352 (2000), 133170.
[2] Avila, A., Jitomirskaya, S.. The Ten Martini Problem, Annal. Math., 170 (2009), 303342.
[3] Avron, J., Mouche, V., Simon, P. H. M., B.. On the measure of the spectrum for the almost Mathieu operator. Commun. Math. Phys., 132 (1990), 103118.
[4] Beckus, S., Pogorzelski, F.. Spectrum of lebesgue measure zero for jacobi matrices of quasicrystals. Mathematical Physics, Analysis and Geometry, 16 (2013), 289308.
[5] J. Bellissard. Spectral properties of Schrödinger’s operator with a Thue-Morse potential. Number Theory and Physics (Les Houches, 1989), 140–150, Springer Proc. Phys., 47, Springer, Berlin 1990.
[6] Bellissard, J., Bovier, A., Ghez, J.-M.. Spectral properties of a tight binding Hamiltonian with period doubling potential. Commun. Math. Phys. 135 (1991), 379399.
[7] Bellissard, J., Bovier, A., Ghez, J.-M.. Gap labelling theorems for one-dimensional discrete Schrödinger operators. Rev. Math. Phys., 4 (1992), 137.
[8] Bellissard, J., Iochum, B., Scoppola, E., Testard, D.. Spectral properties of one dimensional quasi-crystals. Commun. Math. Phys., 125 (1989), 527543.
[9] Brown, T. C.. A characterization of the quadratic irrationals. Canad. Math. Bull., 34 (1991), no. 1, 3641.
[10] Cantat, S.. Bers and Hénon, Painlevé and Schrödinger. Duke Math. J., 149 (2009), 411460.
[11] R. Carmona, J. Lacroix. Spectral theory of random Schrödinger operators. Boston: Birkhäuser, 1990.
[12] Casdagli, M.. Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys., 107 (1986), 295318.
[13] Choi, M.-D., Elliottt, G. A., Yui, N.. Gauss polynomials and the rotation algebra. Invent. Math., 99 (1990), 225246.
[14] Crisp, D., Moran, W., Pollington, A., Shiue, P.. Substitution invariant cutting sequences. J. Théor. Nombres Bordeaux, 5 (1993), no. 1, 123137.
[15] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon. Schrödinger operators. Books and monographs in physics. Berlin, Heidelberg, New York: Springer, 1987.
[16] J. M. Dahl. The spectrum of the off-diagonal Fibonacci operator. Ph.D. thesis, Rice University, 2010-2011.
[17] Damanik, D.. Substitution Hamiltonians with Bounded Trace Map Orbits. J. Math. Anal. App., 249 (2000), 393411.
[18] Damanik, D.. Uniform singular continuous spectrum for the period doubling Hamiltonian. Annal. Henri Poincaré, 20 (2001), 101108.
[19] D. Damanik. Strictly ergodic subshifts and associated operators. Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Sympos. Pure Math., 76, Part 2, Amer. Math. Soc., Providence, RI, 2007.
[20] D. Damanik, M. Embree, A. Gorodetski. Spectral properties of the Schrödinger operators arising in the study of quasicrystals. (preprint) arXiv:1210.5753.
[21] Damanik, D., Embree, M., Gorodetski, A., Tcheremchantsev, S.. The fractal dimension of the spectrum of the Fibonacci Hamiltonian. Commun. Math. Phys., 280 (2008), 499516.
[22] Damanik, D., Gorodetski, A.. Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian. Nonlinearity, 22 (2009), 123143.
[23] Damanik, D., Gorodetski, A.. Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian. Commun. Math. Phys., 305 (2011), 221277.
[24] Damanik, D., Gorodetski, A.. The density of states measure of the weakly coupled Fibonacci Hamiltonian. Geom. Funct. Anal., 22 (2012), 976989.
[25] D. Damanik, A. Gorodetski, B. Solomyak. Absolutely continuous convolutions of singular measures and an application to the square fibonacci hamiltonian. preprint (arXiv:1306.4284).
[26] Damanik, D., Munger, P., Yessen, W. N.. Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients, I. The essential support of the measure. J. Approx. Theory, 173 (2013), 5688.
[27] Damanik, D., Munger, P., Yessen, W. N.. Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients, II. Applications. J. Stat. Phys., 153 (2013), 339362.
[28] Damanik, D., Lenz, D.. Uniform spectral properties of one-dimensional quasicrystals. IV. Quasi-Sturmian potentials. J. Anal. Math., 90 (2003), 115139.
[29] C. R. de Oliveira. Intermediate spectral theory and quantum dynamics. Progress in Mathematical Physics, vol. 54, Birkhäuser Verlag, Basel, 2009.
[30] B. Farb, D. Margalit. A primer on mapping class groups. Princeton University Press, Princeton, NJ., 2012.
[31] A. Fathi, F. Laudenbach, V. Poénaru. Travaux de Thurston sur les surfaces. Asterisque, 66, 67 (1979), (Translation by Kim, D. and Margalit, D., Thurston’s work on surfaces, Princeton University Press, 2012).
[32] N. P. Fogg. Substitutions in dynamics, arithmetics and combinatorics. Lecture Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002, Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.
[33] Gottschalk, W. H.. Substitution minimal sets. Trans. Amer. Math. Soc., 109 (1963), 467491.
[34] B. C. Hall. Quantum theory for mathematicians. Graduate Texts in Mathematics, vol. 267, Springer, New York, 2013.
[35] Hamza, E., Sims, R., Stolz, G.. Dynamical localization in disordered quantum spin systems. Comm. Math. Phys., 315 (2012), 215239.
[36] Harper, P. G.. Single bond motion of conducting electros in a uniform magnetic field. Proc. Phys. Soc. A, 68 (1955), 874878.
[37] B. Hasselblatt. Handbook of Dynamical Systems: Hyperbolic Dynamical Systems. vol. 1A, Elsevier B. V., Amsterdam, The Netherlands, 2002.
[38] B. Hasselblatt, A. Katok. Handbook of Dynamical Systems: Principal Structures. vol. 1A, Elsevier B. V., Amsterdam, The Netherlands, 2002.
[39] B. Hasselblatt, Ya. Pesin. Partially hyperbolic dynamical systems. Handbook of dynamical systems, 1B (2006), 1–55, Elsevier B. V., Amsterdam (Reviewer: C. A. Morales).
[40] Hirsch, M. W., Pugh, C. C.. Stable Manifolds and Hyperbolic Sets, Proc. Symp. Pure Math., 14 (1968), 133163.
[41] Hof, A.. Some remarks on discrete aperiodic Schrödinger operators. J. Stat. Phys., 72 (1993), 13531374.
[42] A. Katok, B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, New York, NY, 1995.
[43] Kohmoto, M., Kadanoff, L. P., Tang, C.. Localization problem in one dimension: Mapping and escape. Phys. Rev. Lett., 50 (1983), 18701872.
[44] Kotani, S.. Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys., 1 (1989), 129133.
[45] Lenz, D.. Singular spectrum of Lebesgue measure zero for one-dimensional quasicrystals. Comm. Math. Phys., 227 (2002), 119130.
[46] Lenz, D., Stollmann, P.. An ergodic theorem for Delone dynamical systems and exitense of the integrated density of states. J. Anal. Math., 97 (2005), 124.
[47] Lieb, E., Schultz, T., Mattis, D.. Two soluble models of an antiferromagnetic chain. Ann. Phys., 16 (1961), 407466.
[48] Liu, Q.-H., Peyrière, J., Wen, Z.-Y.. Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials. C. R. Math. Acad. Sci. Paris, 345 (2007), 667672.
[49] Liu, Q.-H., Tan, B., Wen, Z.-X., Wu, J.. Measure zero spectrum of a class of Schrödinger operators. J. Statist. Phys., 106 (2002), 681691.
[50] Luttinger, J. M.. The effect of a magnetic field on electros in a periodic potential. Phys. Rev., 94 (1951), 814817.
[51] Mañé, R.. The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces, Boletim da Sociedade Brasileira de Matemática, 20 (1990), 124.
[52] M. Mei. Spectral properties of discrete Schrödinger operators with primitive invertible substitution potentials. preprint (arXiv:1311.0954) (2013).
[53] Morse, M., Hedlund, G. A.. Symbolic dynamics II. Sturmian trajectories. Amer. J. Math., 62 (1940), 142.
[54] S. Newhouse. Nondensity of Axiom A on S 2. Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), 191–202, Amer. Math. Soc., Providence, RI, 1970.
[55] Ostlund, S., Pandit, R., Rand, D., Schellnhuber, H. J., Siggia, E. D.. One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett., 50 (1983), 18731876.
[56] Oxtoby, J. C.. Ergodic sets. Bull. Amer. Math. Soc., 58 (1952), 116136.
[57] J. Palis, F. Takens. Hyperbolicity and Sensetive Chaotic Dynamics at Homoclinic Bifurcations. Cambridge University Press, Cambridge, 1993.
[58] L. Pastur, A. Figotin. Spectra of random and almost-periodic operators. Grundlehren der mathematischen Wissenschaften, Vol. 297, Springer, 1992.
[59] Penner, R. C.. A construction of pseudo-Anosov homeomorphisms. Trans. Amer. Math. Soc., 310 (1988), 179197.
[60] Ya. Pesin. Dimension Theory in Dynamical Systems. Chicago Lect. Math. Series, 1997.
[61] Ya. Pesin. Lectures on Partial Hyperbolicity and Stable Ergodicity. Zurich Lect. Adv. Math., European Mathematical Society, 2004.
[62] M. Pollicott. Analyticity of dimensions for hyperbolic surface diffeomorphisms. preprint.
[63] Pugh, C., Shub, M., Wilkinson, A.. Hölder foliations. Duke Math. J., 86 (1997), 517546.
[64] L. Raymond. A constructive gap labelling for the discrete Schrödinger operator on a quasiperiodic chain. preprint (1997).
[65] Remling, C.. The absolutely continuous spectrum of Jacobi matrices. Ann. Math., 174 (2011), 125171.
[66] Roberts, J. A. G.. Escaping orbits in trace maps. Physica A: Stat. Mech. App., 228 (1996), 295325.
[67] Schechtman, D., Blech, I., Gratias, J. W., Cahn, D.. Meallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., 53 (1984), 19511953.
[68] Simon, B.. Equilibrium measures and capacities in spectral theory. Inverse problems and imaging, 1 (2007), 713772.
[69] Smale, S.. Differentiable Dynamical Systems. Bull. Amer. Math. Soc., 73 (1967), 747817.
[70] Sütő, A.. The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys., 111 (1987), 409415.
[71] L. A. Takhtajan. Quantum mechanics for mathematicians, Graduate Studies in Mathematics, vol. 95, American Mathematical Society, Providence, RI, 2008.
[72] Tan, B., Wen, Z.-X., Zhang, Y.. Invertible substitutions on a three-letter alphabet. C. R. Math. Acad. Sci. Paris, 336 (2003), 111116.
[73] G. Teschl. Jacobi operators and completely integrable nonlinear lattices. AMS mathematical surveys and monographs, vol. 72, American Mathematical Society, Providence, RI.
[74] G. Teschl. Mathematical methods in quantum mechanics. Graduate Studies in Mathematics, vol. 99, American Mathematical Society, Providence, RI, 2009, With applications to Schrödinger operators.
[75] Thurston, W. P.. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc., 19 (1988), 417431.
[76] M. Toda. Theory of Nonlinear Lattices. Solid-State Sciences 20, Berlin-Heidelberg-New York, Springer-Verlag, 1981.
[77] Z. Wen, Y. Zhang. Some remarks on invertible substitutions on three letter alphabet. Chinese Sci. Bull., 44 (1999).
[78] Yessen, W. N.. Spectral analysis of tridiagonal Fibonacci Hamiltonians. J. Spectr. Theory, 3 (2013), 101128.
[79] Yessen, W. N.. On the energy spectrum of 1d quantum ising quasicrystal. Annal. H. Poincaré, 15 (2014), 419467.
[80] Yessen, W. N.. Properties of 1D Classical and Quantum Ising Models: Rigorous Results. Ann. Henri Poincaré, 15 (2014), 793828.

Keywords

Related content

Powered by UNSILO

Tridiagonal Substitution Hamiltonians

  • M. Mei (a1) and W. Yessen (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.