[1] Astels, S.. *Cantor sets and numbers with restricted partial quotients*. Trans. Amer. Math. Soc., 352 (2000), 133–170.

[2] Avila, A., Jitomirskaya, S.. *The Ten Martini Problem*, Annal. Math., 170 (2009), 303–342.

[3] Avron, J., Mouche, V., Simon, P. H. M., B.. *On the measure of the spectrum for the almost Mathieu operator*. Commun. Math. Phys., 132 (1990), 103–118.

[4] Beckus, S., Pogorzelski, F.. *Spectrum of lebesgue measure zero for jacobi matrices of quasicrystals*. Mathematical Physics, Analysis and Geometry, 16 (2013), 289–308.

[5] J. Bellissard. *Spectral properties of Schrödinger’s operator with a Thue-Morse potential*. Number Theory and Physics (Les Houches, 1989), 140–150, Springer Proc. Phys., 47, Springer, Berlin 1990.

[6] Bellissard, J., Bovier, A., Ghez, J.-M.. *Spectral properties of a tight binding Hamiltonian with period doubling potential*. Commun. Math. Phys. 135 (1991), 379–399.

[7] Bellissard, J., Bovier, A., Ghez, J.-M.. *Gap labelling theorems for one-dimensional discrete Schrödinger operators*. Rev. Math. Phys., 4 (1992), 1–37.

[8] Bellissard, J., Iochum, B., Scoppola, E., Testard, D.. *Spectral properties of one dimensional quasi-crystals*. Commun. Math. Phys., 125 (1989), 527–543.

[9] Brown, T. C.. *A characterization of the quadratic irrationals*. Canad. Math. Bull., 34 (1991), no. 1, 36–41.

[10] Cantat, S.. *Bers and Hénon, Painlevé and Schrödinger*. Duke Math. J., 149 (2009), 411–460.

[11] R. Carmona, J. Lacroix. *Spectral theory of random Schrödinger operators*. Boston: Birkhäuser, 1990.

[12] Casdagli, M.. *Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation*. Commun. Math. Phys., 107 (1986), 295–318.

[13] Choi, M.-D., Elliottt, G. A., Yui, N.. *Gauss polynomials and the rotation algebra*. Invent. Math., 99 (1990), 225–246.

[14] Crisp, D., Moran, W., Pollington, A., Shiue, P.. *Substitution invariant cutting sequences*. J. Théor. Nombres Bordeaux, 5 (1993), no. 1, 123–137.

[15] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon. *Schrödinger operators. Books and monographs in physics.* Berlin, Heidelberg, New York: Springer, 1987.

[16] J. M. Dahl. *The spectrum of the off-diagonal Fibonacci operator.* Ph.D. thesis, Rice University, 2010-2011.

[17] Damanik, D.. *Substitution Hamiltonians with Bounded Trace Map Orbits*. J. Math. Anal. App., 249 (2000), 393–411.

[18] Damanik, D.. *Uniform singular continuous spectrum for the period doubling Hamiltonian*. Annal. Henri Poincaré, 20 (2001), 101–108.

[19] D. Damanik. *Strictly ergodic subshifts and associated operators*. Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Sympos. Pure Math., 76, Part 2, Amer. Math. Soc., Providence, RI, 2007.

[20] D. Damanik, M. Embree, A. Gorodetski. *Spectral properties of the Schrödinger operators arising in the study of quasicrystals.* (preprint) arXiv:1210.5753.

[21] Damanik, D., Embree, M., Gorodetski, A., Tcheremchantsev, S.. *The fractal dimension of the spectrum of the Fibonacci Hamiltonian*. Commun. Math. Phys., 280 (2008), 499–516.

[22] Damanik, D., Gorodetski, A.. *Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian*. Nonlinearity, 22 (2009), 123–143.

[23] Damanik, D., Gorodetski, A.. *Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian*. Commun. Math. Phys., 305 (2011), 221–277.

[24] Damanik, D., Gorodetski, A.. *The density of states measure of the weakly coupled Fibonacci Hamiltonian*. Geom. Funct. Anal., 22 (2012), 976–989.

[25] D. Damanik, A. Gorodetski, B. Solomyak. *Absolutely continuous convolutions of singular measures and an application to the square fibonacci hamiltonian*. preprint (arXiv:1306.4284).

[26] Damanik, D., Munger, P., Yessen, W. N.. *Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients, I. The essential support of the measure*. J. Approx. Theory, 173 (2013), 56–88.

[27] Damanik, D., Munger, P., Yessen, W. N.. *Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients, II. Applications*. J. Stat. Phys., 153 (2013), 339–362.

[28] Damanik, D., Lenz, D.. *Uniform spectral properties of one-dimensional quasicrystals. IV. Quasi-Sturmian potentials*. J. Anal. Math., 90 (2003), 115–139.

[29] C. R. de Oliveira. *Intermediate spectral theory and quantum dynamics.* Progress in Mathematical Physics, vol. 54, Birkhäuser Verlag, Basel, 2009.

[30] B. Farb, D. Margalit. *A primer on mapping class groups.* Princeton University Press, Princeton, NJ., 2012.

[31] A. Fathi, F. Laudenbach, V. Poénaru. *Travaux de Thurston sur les surfaces.* Asterisque, 66, 67 (1979), (Translation by Kim, D. and Margalit, D., *Thurston’s work on surfaces*, Princeton University Press, 2012).

[32] N. P. Fogg. *Substitutions in dynamics, arithmetics and combinatorics.* Lecture Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002, Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.

[33] Gottschalk, W. H.. *Substitution minimal sets*. Trans. Amer. Math. Soc., 109 (1963), 467–491.

[34] B. C. Hall. *Quantum theory for mathematicians.* Graduate Texts in Mathematics, vol. 267, Springer, New York, 2013.

[35] Hamza, E., Sims, R., Stolz, G.. *Dynamical localization in disordered quantum spin systems*. Comm. Math. Phys., 315 (2012), 215–239.

[36] Harper, P. G.. *Single bond motion of conducting electros in a uniform magnetic field*. Proc. Phys. Soc. A, 68 (1955), 874–878.

[37] B. Hasselblatt. *Handbook of Dynamical Systems: Hyperbolic Dynamical Systems.* vol. 1A, Elsevier B. V., Amsterdam, The Netherlands, 2002.

[38] B. Hasselblatt, A. Katok. *Handbook of Dynamical Systems: Principal Structures.* vol. 1A, Elsevier B. V., Amsterdam, The Netherlands, 2002.

[39] B. Hasselblatt, Ya. Pesin. *Partially hyperbolic dynamical systems.* Handbook of dynamical systems, 1B (2006), 1–55, Elsevier B. V., Amsterdam (Reviewer: C. A. Morales).

[40] Hirsch, M. W., Pugh, C. C.. *Stable Manifolds and Hyperbolic Sets*, Proc. Symp. Pure Math., 14 (1968), 133–163.

[41] Hof, A.. *Some remarks on discrete aperiodic Schrödinger operators*. J. Stat. Phys., 72 (1993), 1353–1374.

[42] A. Katok, B. Hasselblatt. *Introduction to the Modern Theory of Dynamical Systems.* Cambridge University Press, New York, NY, 1995.

[43] Kohmoto, M., Kadanoff, L. P., Tang, C.. *Localization problem in one dimension: Mapping and escape*. Phys. Rev. Lett., 50 (1983), 1870–1872.

[44] Kotani, S.. *Jacobi matrices with random potentials taking finitely many values*. Rev. Math. Phys., 1 (1989), 129–133.

[45] Lenz, D.. *Singular spectrum of Lebesgue measure zero for one-dimensional quasicrystals*. Comm. Math. Phys., 227 (2002), 119–130.

[46] Lenz, D., Stollmann, P.. *An ergodic theorem for Delone dynamical systems and exitense of the integrated density of states*. J. Anal. Math., 97 (2005), 1–24.

[47] Lieb, E., Schultz, T., Mattis, D.. *Two soluble models of an antiferromagnetic chain*. Ann. Phys., 16 (1961), 407–466.

[48] Liu, Q.-H., Peyrière, J., Wen, Z.-Y.. *Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials*. C. R. Math. Acad. Sci. Paris, 345 (2007), 667–672.

[49] Liu, Q.-H., Tan, B., Wen, Z.-X., Wu, J.. *Measure zero spectrum of a class of Schrödinger operators*. J. Statist. Phys., 106 (2002), 681–691.

[50] Luttinger, J. M.. *The effect of a magnetic field on electros in a periodic potential*. Phys. Rev., 94 (1951), 814–817.

[51] Mañé, R.. *The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces*, Boletim da Sociedade Brasileira de Matemática, 20 (1990), 1–24.

[52] M. Mei. *Spectral properties of discrete Schrödinger operators with primitive invertible substitution potentials*. preprint (arXiv:1311.0954) (2013).

[53] Morse, M., Hedlund, G. A.. *Symbolic dynamics II. Sturmian trajectories*. Amer. J. Math., 62 (1940), 1–42.

[54] S. Newhouse. *Nondensity of Axiom* *A* * on * *S* ^{2}. Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), 191–202, Amer. Math. Soc., Providence, RI, 1970.

[55] Ostlund, S., Pandit, R., Rand, D., Schellnhuber, H. J., Siggia, E. D.. *One-dimensional Schrödinger equation with an almost periodic potential*. Phys. Rev. Lett., 50 (1983), 1873–1876.

[56] Oxtoby, J. C.. *Ergodic sets*. Bull. Amer. Math. Soc., 58 (1952), 116–136.

[57] J. Palis, F. Takens. *Hyperbolicity and Sensetive Chaotic Dynamics at Homoclinic Bifurcations*. Cambridge University Press, Cambridge, 1993.

[58] L. Pastur, A. Figotin. *Spectra of random and almost-periodic operators*. Grundlehren der mathematischen Wissenschaften, Vol. 297, Springer, 1992.

[59] Penner, R. C.. *A construction of pseudo-Anosov homeomorphisms*. Trans. Amer. Math. Soc., 310 (1988), 179–197.

[60] Ya. Pesin. *Dimension Theory in Dynamical Systems.* Chicago Lect. Math. Series, 1997.

[61] Ya. Pesin. *Lectures on Partial Hyperbolicity and Stable Ergodicity.* Zurich Lect. Adv. Math., European Mathematical Society, 2004.

[62] M. Pollicott. *Analyticity of dimensions for hyperbolic surface diffeomorphisms.* preprint.

[63] Pugh, C., Shub, M., Wilkinson, A.. *Hölder foliations*. Duke Math. J., 86 (1997), 517–546.

[64] L. Raymond. *A constructive gap labelling for the discrete Schrödinger operator on a quasiperiodic chain*. preprint (1997).

[65] Remling, C.. *The absolutely continuous spectrum of Jacobi matrices*. Ann. Math., 174 (2011), 125–171.

[66] Roberts, J. A. G.. *Escaping orbits in trace maps*. Physica A: Stat. Mech. App., 228 (1996), 295–325.

[67] Schechtman, D., Blech, I., Gratias, J. W., Cahn, D.. *Meallic phase with long-range orientational order and no translational symmetry*. Phys. Rev. Lett., 53 (1984), 1951–1953.

[68] Simon, B.. *Equilibrium measures and capacities in spectral theory*. Inverse problems and imaging, 1 (2007), 713–772.

[69] Smale, S.. *Differentiable Dynamical Systems*. Bull. Amer. Math. Soc., 73 (1967), 747–817.

[70] Sütő, A.. *The spectrum of a quasiperiodic Schrödinger operator*. Commun. Math. Phys., 111 (1987), 409–415.

[71] L. A. Takhtajan. *Quantum mechanics for mathematicians*, Graduate Studies in Mathematics, vol. 95, American Mathematical Society, Providence, RI, 2008.

[72] Tan, B., Wen, Z.-X., Zhang, Y.. *Invertible substitutions on a three-letter alphabet*. C. R. Math. Acad. Sci. Paris, 336 (2003), 111–116.

[73] G. Teschl. *Jacobi operators and completely integrable nonlinear lattices*. AMS mathematical surveys and monographs, vol. 72, American Mathematical Society, Providence, RI.

[74] G. Teschl. *Mathematical methods in quantum mechanics*. Graduate Studies in Mathematics, vol. 99, American Mathematical Society, Providence, RI, 2009, With applications to Schrödinger operators.

[75] Thurston, W. P.. *On the geometry and dynamics of diffeomorphisms of surfaces*. Bull. Amer. Math. Soc., 19 (1988), 417–431.

[76] M. Toda. *Theory of Nonlinear Lattices*. Solid-State Sciences 20, Berlin-Heidelberg-New York, Springer-Verlag, 1981.

[77] Z. Wen, Y. Zhang. *Some remarks on invertible substitutions on three letter alphabet*. Chinese Sci. Bull., 44 (1999).

[78] Yessen, W. N.. *Spectral analysis of tridiagonal Fibonacci Hamiltonians*. J. Spectr. Theory, 3 (2013), 101–128.

[79] Yessen, W. N.. *On the energy spectrum of 1d quantum ising quasicrystal*. Annal. H. Poincaré, 15 (2014), 419–467.

[80] Yessen, W. N.. *Properties of 1D Classical and Quantum Ising Models: Rigorous Results*. Ann. Henri Poincaré, 15 (2014), 793–828.