Skip to main content Accessibility help

Respiratory Control and the Onset of Periodic Breathing

  • A. C. Fowler


We analyse a reduced version of the Grodins et al. control model [14] of respiration involving only CO2, and show that it can be dramatically simplified by the use of judicious approximations. In particular, we show that the conceptual basis of the popular model of Mackey and Glass [20] is at odds with the important transport processes of the Grodins model. Despite this, a realistic approximation of the Grodins model yields a Mackey-Glass type model with almost the same criterion for the onset of Cheyne-Stokes breathing.

While the reduced Grodins model does apparently provide a realistic mechanism for instability, consideration of the buffering effect of the blood-brain barrier appears to make it unlikely. We conclude that a realistic physiological model of Grodins type to explain Cheyne–Stokes breathing is not yet in place, and raise the question whether the bicarbonate buffering system has a rôle to play.


Corresponding author

Corresponding author. E-mail:


Hide All
[1] Batzel, J. J., Tran, H. T.. Modeling instability in the control system for human respiration: applications to infant non-REM sleep. Appl. Math. Comput. 110 (2000a), 151.
[2] Batzel, J. J., Tran, H. T.. Stability of the human respiratory control system. I. Analysis of a two-dimensional delay state-space model. J. Math. Biol. 41 (2000b), 4579.
[3] Batzel, J. J., Tran, H. T.. Stability of the human respiratory control system. II. Analysis of a three-dimensional delay state-space model. J. Math. Biol. 41 (2000c), 80102.
[4] Ben-tal, A., Smith, J. C.. Control of breathing: two types of delays studied in an integrated model of the respiratory system. Respir. Physiol. Neurobiol. 170 (2010), 103112.
[5] Carley, D. W., Shannon, D. C.. A minimal mathematical model of human periodic breathing. J. Appl. Physiol. 65 (1988), 14001409.
[6] Cheyne, J. A.. A case of apoplexy in which the fleshy part of the heart was converted into fat. Dublin Hosp. Rep. 2 (1818), 216219.
[7] Dong, F., Langford, W. F.. Models of Cheyne–Stokes respiration with cardiovascular pathologies. J. Math. Biol. 57 (2008), 497519.
[8] ElHefnawy, A., Saidel, G. M., Bruce, E. N., Cherniack, N. S. Stability analysis of CO 2 control of ventilation. J. Appl. Physiol. 69 (1990), 498503.
[9] Fowler, A. C., Kalamangalam, G. P., Kember, G. C.. A mathematical analysis of the Grodins model of respiratory control. IMA J. Math. Appl. Med. Biol. 10 (1993), 249280.
[10] Fowler, A. C., Kalamangalam, G. P.. The role of the central chemoreceptor in causing periodic breathing. IMA J. Math. Appl. Med. Biol. 17 (2000), 147167.
[11] Fowler, A. C., Kalamangalam, G. P.. Periodic breathing at high altitude. IMA J. Math. Appl. Med. Biol. 19 (2003), 293313.
[12] Fowler, A. C., Rickaby, R. E. M., Wolff, E. W.. Exploration of a simple model for ice ages. Int. J. Geomath. 4 (2013), 227297.
[13] Francis, D. P., Wilson, K., Davies, L. C., Coats, A. J. S., Piepoli, M.. Quantitative general theory for periodic breathing in chronic heart failure and its clinical implications. Circulation 102 (2000), 2, 214221.
[14] Grodins, F. S., Buell, J., Bart, A. J.. Mathematical analysis and digital simulation of the respiratory control system. J. Appl. Physiol. 22 (1967), 260276.
[15] Guyton, A. C., Crowell, J. W., Moore, J. W.. Basic oscillating mechanism of Cheyne–Stokes breathing. Amer. J. Physiol. 187 (1956), 395398.
[16] A. C. Guyton, J. E. Hall Textbook of medical physiology, 11th ed. Elsevier, Pennsylvania, 2006.
[17] Khoo, M. C. K., Kronauer, R. E., Strohl, K. P., Slutsky, A. S.. Factors inducing periodic breathing in humans: a general model. J. Appl. Physiol. 53 (1982), 644659.
[18] Kryger, M. H., Millar, T.. Cheyne–Stokes respiration: stability of interacting systems in heart failure. Chaos 1 (1991), 265269.
[19] Longobardo, G.-S., Gothe, B., Cherniack, N. S.. Factors affecting respiratory system stability. Ann. Biomed. Engng. 17 (1989), 377396.
[20] Mackey, M. C., Glass, L.. Oscillations and chaos in physiological control systems. Science 197 (1977), 287289.
[21] Manisty, C. H., Willson, K., Wensel, R., Whinnett, Z. I., Davies, J. E., Oldfield, W. L. G., Mayet, J., Francis, D. P.. Development of respiratory control instability in heart failure: a novel approach to dissect the pathophysiological mechanisms. J. Physiol. 577 (2006), 387401.
[22] Martin, N. K., Gaffney, E. A., Gatenby, R. A., Gillies, R. J., Robey, I. F., Maini, P. K.. A mathematical model of tumour and blood pHe regulation: The HCO3-/CO2 buffering system. Math. Biosci. 230 (2011), 111.
[23] J. D. Murray Mathematical biology. Springer-Verlag, Berlin, (2003).
[24] W. Stokes The disease of the heart and the aorta. Hodges and Smith, Dublin, Ireland, (1854).
[25] M. P. Ward, J. S. Milledge and J. B. West High altitude medicine and physiology, 3rd ed. Arnold, London, (2000).
[26] J. B. West Respiratory physiology—the essentials, 4th ed. Williams and Wilkins, Baltimore, (1990).
[27] West, J. B., Peters, R. M., Aksnes, G. K. H., Milledge, J. S., Schoene, R. B.. Nocturnal periodic breathing at 6300 and 8050 m. J. Appl. Physiol. 61 (1986), 280287.


Respiratory Control and the Onset of Periodic Breathing

  • A. C. Fowler


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed