Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-07T01:51:31.490Z Has data issue: false hasContentIssue false

On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation

Published online by Cambridge University Press:  17 September 2013

T. Tzaneteas*
Affiliation:
Department of Mathematics, Aarhus University, Aarhus, Denmark
I.M. Sigal*
Affiliation:
Dept. of Mathematics, Univ. of Toronto, Toronto, Canada, M5S 2E4
*
Corresponding author. E-mail: ttzaneteas@imf.au.dk
⋆⋆ Corresponding author. E-mail: im.sigal@utoronto.ca
Get access

Abstract

Building on earlier work, we have given in [29] a proof of existence of Abrikosov vortex lattices in the Ginzburg-Landau model of superconductivity and shown that the triangular lattice gives the lowest energy per lattice cell. After [29] was published, we realized that it proves a stronger result than was stated there. This result is recorded in the present paper. The proofs remain the same as in [29], apart from some streamlining.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrikosov, A. A.. On the magnetic properties of superconductors of the second group. J. Explt. Theoret. Phys. (USSR) 32 (1957), 11471182. Google Scholar
Aftalion, A., Blanc, X., Nier, F.. Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates. J. Funct. Anal. 241 (2006), 661702. CrossRefGoogle Scholar
Aftalion, A., Serfaty, S.. Lowest Landau level approach in superconductivity for the Abrikosov lattice close to Hc2. Selecta Math. (N.S.) 13 (2007), 183202. CrossRefGoogle Scholar
L. V. Alfors. Complex analysis. McGraw-Hill, New York, 1979.
Almog, Y.. On the bifurcation and stability of periodic solutions of the Ginzburg-Landau equations in the plane. SIAM J. Appl. Math. 61 (2000), 149171. CrossRefGoogle Scholar
Almog, Y., Abrikosov lattices in finite domains. Commun. Math. Phys. 262 (2006), 677-702. CrossRefGoogle Scholar
A. Ambrosetti, G. Prodi. A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge, 1993.
Barany, E., Golubitsky, M., Turski, J.. Bifurcations with local gauge symmetries in the Ginzburg-Landau equations. Phys. D 56 (1992), 3656. CrossRefGoogle Scholar
Berger, M.S., Chen, Y. Y.. Symmetric vortices for the nonlinear Ginzburg-Landau equations of superconductivity, and the nonlinear desingularization phenomenon. J. Fun. Anal. 82 (1989) 259-295. CrossRefGoogle Scholar
Chapman, S. J.. Nucleation of superconductivity in decreasing fields. European J. Appl. Math. 5 (1994), 449468. Google Scholar
Chapman, S. J., Howison, S. D., Ockedon, J. R.. Macroscopic models of superconductivity. SIAM Rev. 34 (1992), 529560. CrossRef
Du, Q., Gunzburger, M. D., Peterson, J. S.. Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34 (1992), 5481. CrossRefGoogle Scholar
Dutour, M.. Phase diagram for Abrikosov lattice. J. Math. Phys. 42 (2001), 49154926. CrossRefGoogle Scholar
M. Dutour. Bifurcation vers l’état d’Abrikosov et diagramme des phases. Thesis Orsay, http://www.arxiv.org/abs/math-ph/9912011.
Eilenberger, G., Zu Abrikosovs Theorie der periodischen Lösungen der GL-Gleichungen für Supraleiter 2. Z. Physik 180 (1964), 3242. CrossRefGoogle Scholar
S. Fournais, B. Helffer. Spectral Methods in Surface Superconductivity. Progress in Nonlinear Differential Equations and their Applications, vol. 77, Birkhäuser, 2010.
Gustafson, S., Sigal, I.M.. The stability of magnetic vortices. Comm. Math. Phys. 212 (2000) 257-275. Google Scholar
S. Gustafson, I. M. Sigal. Mathematical Concepts of Quantum Mechanics. Springer, 2006.
Gustafson, S. J., Sigal, I. M., Tzaneteas, T.. Statics and dynamics of magnetic vortices and of Nielsen-Olesen (Nambu) strings. J. Math. Phys. 51, 015217 (2010). CrossRefGoogle Scholar
A. Jaffe, C. Taubes. Vortices and Monopoles: Structure of Static Gauge Theories. Progress in Physics 2. Birkhäuser, Boston, Basel, Stuttgart, 1980.
Kleiner, W.H., Roth, L. M., Autler, S. H.. Bulk solution of Ginzburg-Landau equations for type II superconductors: upper critical field region. Phys. Rev. 133 (1964), A1226A1227. CrossRefGoogle Scholar
Lasher, G.. Series solution of the Ginzburg-Landau equations for the Abrikosov mixed state. Phys. Rev. 140 (1965), A523A528. CrossRefGoogle Scholar
Nonnenmacher, S., Voros, A.. Chaotic eigenfunctions in phase space. J. Statist. Phys. 92 (1998), 431518. CrossRefGoogle Scholar
Odeh, F., Existence and bifurcation theorems for the Ginzburg-Landau equations. J. Math. Phys. 8 (1967), 23512356. CrossRefGoogle Scholar
Ovchinnikov, Yu. N.. Structure of the supercponducting state near the critical fiel Hc2 for values of the Ginzburg-Landau parameter κ close to unity. JETP. 85 (4) (1997), 818823. CrossRefGoogle Scholar
J. Rubinstein. Six Lectures on Superconductivity. Boundaries, interfaces, and transitions (Banff, AB, 1995), 163–184, CRM Proc. Lecture Notes, 13, Amer. Math. Soc., Providence, RI, 1998.
E. Sandier, S. Serfaty. Vortices in the Magnetic Ginzburg-Landau Model. Progress in Nonlinear Differential Equations and their Applications, vol.l 70, Birkhäuser, 2007.
Takáč, P.. Bifurcations and vortex formation in the Ginzburg-Landau equations. Z. Angew. Math. Mech. 81 (2001), 523539. 3.0.CO;2-9>CrossRefGoogle Scholar
Tzaneteas, T., Sigal, I. M.. Abrikosov lattice solutions of the Ginzburg-Landau equations. Contemporary Mathematics 535, 195213, 2011. CrossRefGoogle Scholar