Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-10T09:28:04.544Z Has data issue: false hasContentIssue false

A Numerical Method for the Controls of the Heat Equation

Published online by Cambridge University Press:  20 June 2014

I. F. Bugariu
Affiliation:
Facultatea de Matematica si Stiinte ale Naturii, Universitatea din Craiova, 200585, Romania
S. Micu*
Affiliation:
Facultatea de Matematica si Stiinte ale Naturii, Universitatea din Craiova, 200585, Romania
*
Corresponding author. E-mail: sdmicu@yahoo.com
Get access

Abstract

This work is devoted to analyze a numerical scheme for the approximation of the linear heat equation’s controls. It is known that, due to the regularizing effect, the efficient computation of the null controls for parabolic type equations is a difficult problem. A possible cure for the bad numerical behavior of the approximating controls consists of adding a singular perturbation depending on a small parameter ε which transforms the heat equation into a wave equation. A space discretization of step h leads us to a system of ordinary differential equations. The aim of this paper is to show that there exists a sequence of exact controls of the corresponding perturbed semi-discrete systems which converges to a control of the original heat equation when both h (the mesh size) and ε (the perturbation parameter) tend to zero.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S.A. Avdonin, S.A. Ivanov. Families of exponentials. The method of moments in controllability problems for distributed parameter systems. Cambridge University Press, 1995.
F. Boyer, J. Le Rousseau. Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations. Ann. Inst. Poincarè, Available online 12 September 2013, http://dx.doi.org/10.1016/j.anihpc.2013.07.011.
E. Fernàndez-Cara, A. Münch. Numerical null-controllability of a semi-linear heat equation via a least squares method. C. R. Acad. Sci. Paris, Ser. I 340 (2005).
Carthel, C., Glowinski, R., Lions, J.-L.. On exact and approximate Boundary Controllability for the heat equation: A numerical approach. JOTA 82 (1994), 429484. CrossRefGoogle Scholar
Fattorini, H.O., Russell, D.L.. Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Ration. Mech. Anal., 43 (1971), 272292. CrossRefGoogle Scholar
Fattorini, H.O., Russell, D.L.. Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations. Q. Appl. Math., 32 (1974/75), 4569. CrossRefGoogle Scholar
A.V. Fursikov, O.Yu. Imanuvilov. Controllability of Evolution Equations. Lecture Notes Series, Number 34, Seoul National University, Korea, 1996.
T.J.R. Hughes. The finite element method: Linear static and dynamic finite element analysis. Prentice Hall Inc., Englewood Cliffs, NJ, 1987.
Ingham, A.E.. A note on Fourier transform. J. London Math. Soc., 9 (1934), 2932. CrossRefGoogle Scholar
E. Isaakson, H.B. Keller. Analysis of Numerical Methods, John Wiley and Sons, 1996.
V. Komornik, P. Loreti. Fourier Series in Control Theory, Springer-Verlag, New-York, 2005.
R. Lattés, J.-L. Lions. The Method of Quasi-Reversibility. Applications to Partial Differential Equations. Modern Analytic and Computational Methods in Science and Mathematics vol 18, New York: American Elsevier, 1969.
Lebeau, G., Robbiano, L.. Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations 20 (1995), 335356. CrossRefGoogle Scholar
J. L. Lions. Controlabilité exacte, stabilisation et perturbations des systèmes distribués. Vol. 1, Masson, Paris, 1988.
Lions, J.-L., Zuazua, E.. The cost of controlling unstable systems: time irreversible systems. Rev. Mat. de la UCM 10 (1997), 481523. Google Scholar
Lions, J.-L., Zuazua, E.. The cost of controlling unstable systems: the case of boundary controls, J. Anal. Math. 73 (1997), 225249. CrossRefGoogle Scholar
A. López, E. Zuazua. Some new results related to the null-controllability of the 1-d heat equation. Sèm EDP, Ecole Polytech. VIII (1998), 1–22.
López, A., Zhang, X., Zuazua, E.. Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations. J. Math. Pures Appl. 79 (2000), 741808. CrossRefGoogle Scholar
S. Micu, E. Zuazua. An Introduction to the Controllability of Partial Differential Equations. “Quelques questions de thèorie du contròle". Sari, T., ed., Collection Travaux en Cours Hermann, (2004), 69-157.
Micu, S., Zuazua, E.. On the regularity of null-controls of the linear 1-d heat equation. C. R. Acad. Sci. Paris, Ser. I 349 (2011), 673677. CrossRefGoogle Scholar
Micu, S., Zuazua, E.. Regularity issues for the null-controllability of the linear 1-d heat equation. Systems & Control Letters 60 (2011), 406413. CrossRefGoogle Scholar
A. Münch, P. Pedregal. Numerical null controllability of the heat equation through a least squares and variational approach. European Journal of Applied Mathematics, Published online: 13 February 2014, http://dx.doi.org/10.1017/S0956792514000023.
A. Münch, E. Zuazua. Numerical approximation of the null controls for the heat equation through transmutation. J. Inverse Problems 26(8) (2010), doi:10.1088/0266-5611/26/8/085018.
R.E.A.C. Paley, N. Wiener. Fourier Transforms in Complex Domains. AMS Colloq. Publ., Vol. 19, Amer. Math. Soc., New-York, 1934.
M. Tucsnak, G. Weiss. Observation and Control for Operator Semigroups. Birkhuser Advanced Texts, Springer, Basel, 2009.
Weber, C.F.. Analysis and solution of the ill-posed inverse heat conduction problem. Int. J. Heat Mass Transfer 24 (1981), 178392. CrossRefGoogle Scholar
R.M. Young. An Introduction to Nonharmonic Fourier Series. Academic Press, New-York, 1980.