Skip to main content Accessibility help
×
Home

Continuous Time Random Walks with Reactions Forcing and Trapping

  • C. N. Angstmann, I. C. Donnelly and B. I. Henry

Abstract

One of the central results in Einstein’s theory of Brownian motion is that the mean square displacement of a randomly moving Brownian particle scales linearly with time. Over the past few decades sophisticated experiments and data collection in numerous biological, physical and financial systems have revealed anomalous sub-diffusion in which the mean square displacement grows slower than linearly with time. A major theoretical challenge has been to derive the appropriate evolution equation for the probability density function of sub-diffusion taking into account further complications from force fields and reactions. Here we present a derivation of the generalised master equation for an ensemble of particles undergoing reactions whilst being subject to an external force field. From this general equation we show reductions to a range of well known special cases, including the fractional reaction diffusion equation and the fractional Fokker-Planck equation.

Copyright

Corresponding author

Corresponding author. E-mail: b.henry@unsw.edu.au

References

Hide All
[1] Fokker, A. D.. Die mittlere energie rotierender elektrischer dipole im strahlungsfeld. Annalen der Physik, vol. 348, no. 5, (1914), pp. 810-820.
[2] M. Planck, Sitzber. Preu. Akad. Wiss., (1917), p. 324.
[3] H. Risken. The Fokker-Planck equation: Methods of solution and applications. Second Edition., vol. 18. Springer Verlag, 1996.
[4] Barkai, E., Metzler, R., Klafter, J.. From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E, vol. 61, no. 1, (2000), p. 132.
[5] Sokolov, I. M., Klafter, J.. Field-induced dispersion in subdiffusion. Phys. Rev. Lett., vol. 97, no. 14, (2006), p. 140602.
[6] Magdziarz, M., Weron, A., Klafter, J.. Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: The case of a time-dependent force. Phys. Rev. Lett., vol. 101, no. 21, (2008), p. 210601.
[7] Henry, B. I., Langlands, T. A. M., Straka, P.. Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces. Phys. Rev. Lett., vol. 105, no. 17, (2010), p. 170602.
[8] Weron, A., Magdziarz, M., Weron, K.. Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker-Planck equation. Phys. Rev. E, vol. 77, no. 3, (2008), p. 036704.
[9] M. G. Hahn, K. Kobayashi, S. Umarov. Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion. Proc. Amer. Math. Soc., (2011), pp. 691-705.
[10] Shkilev, V. P.. Subdiffusion in a time-dependent force field. J. Exp. Theor. Phys., vol. 114, (2012), p. 830.
[11] Henry, B. I., Wearne, S. L.. Fractional reaction-diffusion. Physica A, vol. 276, no. 3, (2000), pp. 448-455.
[12] Henry, B. I., Langlands, T. A. M., Wearne, S. L.. Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E, vol. 74, no. 3, (2006), p. 031116.
[13] Sokolov, I. M., Schmidt, M. G. W., Sagués, F.. Reaction-subdiffusion equations. Phys. Rev. E, vol. 73, no. 3, (2006), p. 031102.
[14] Langlands, T. A. M., Henry, B. I., Wearne, S. L.. Anomalous subdiffusion with multi-species linear reaction dynamics. Phys. Rev. E, vol. 77, no. 2, (2008), p. 021111.
[15] Fedotov, S.. Non-Markovian random walks and nonlinear reactions: Subdiffusion and propagating fronts. Phys. Rev. E, vol. 81, no. 1, (2010), p. 011117.
[16] Abad, E., Yuste, S. B., Lindenberg, K.. Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks. Phys. Rev. E, vol. 81, no. 3, (2010), p. 031115.
[17] Bel, G., Barkai, E.. Weak ergodicity breaking in the continuous-time random walk. Phys. Rev. Lett., vol. 94, no. 24, (2005), p. 240602.
[18] Magdziarz, M., Weron, A., Burnecki, K., Klafter, J.. Fractional Brownian motion versus the continuous-time random walk: A simple test for subdiffusive dynamics. Phys. Rev. Lett., vol. 103, (2009), p. 180602.
[19] Deng, W., Barkai, E.. Ergodic properties of fractional Brownian-Langevin motion. Phys. Rev. E, vol. 79, no. 1, (2009), p. 011112.
[20] Weigel, A., Simon, B., Tamkun, M., Krapf, D.. Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc. Natl. Acad. Sci., vol. 108, no. 16, (2011), pp. 6438-6443.
[21] Langlands, T. A. M., Henry, B. I.. Fractional chemotaxis diffusion equations. Phys. Rev. E, vol. 81, no. 5, (2010), p. 051102.
[22] Fedotov, S.. Subdiffusion, chemotaxis, and anomalous aggregation. Phys. Rev. E, vol. 83, no. 2, (2011), p. 021110.
[23] Eliazar, I., Klafter, J.. Anomalous is ubiquitous. Ann. Phys., vol. 326, no. 9, (2011), pp. 2517-2531.
[24] Ritchie, K., Shan, X. Y., Kondo, J., Iwasawa, K., Fujiwara, T., Kusumi, A.. Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophysical journal, vol. 88, no. 3, (2005), p. 2266.
[25] Santamaria, F., Wils, S., De Schutter, E., Augustine, G.. The diffusional properties of dendrites depend on the density of dendritic spines. European Journal of Neuroscience, vol. 34, no. 4, (2011), pp. 561-568.
[26] Saxton, M.. Anomalous diffusion due to binding: a monte carlo study. Biophysical journal, vol. 70, no. 3, (1996), pp. 1250-1262.
[27] Malchus, N., Weiss, M.. Elucidating anomalous protein diffusion in living cells with fluorescence correlation spectroscopy-facts and pitfalls. J. Fluoresc., vol. 20, (2010), pp. 19-26.
[28] Jeon, J. H., Tejedor, V., Burov, S., Barkai, E., Selhuber-Unkel, C., Berg-Sørensen, K., Oddershede, L., Metzler, R., In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett., vol. 106, no. 4, (2011), p. 48103.
[29] Santamaria, F., Wils, S., De Schutter, E., Augustine, G. J.. Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron, vol. 52, no. 4, (2006), pp. 635-648.
[30] Santamaria, F., Wils, S., De Schutter, E., Augustine, G. J.. The diffusional properties of dendrites depend on the density of dendritic spines. Eur. J. Neurosci., vol. 34, no. 4, (2011), pp. 561-568.
[31] Henry, B. I., Langlands, T. A. M., Wearne, S. L.. Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett., vol. 100, no. 12, (2008), p. 128103.
[32] Langlands, T. A. M., Henry, B. I., Wearne, S. L.. Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions J. Math. Biol., vol. 59, no. 6, (2009), pp. 761-808.
[33] Langlands, T. A. M., Henry, B. I., Wearne, S. L.. Fractional cable equation models for anomalous electrodiffusion in nerve cells: Finite domain solutions. SIAM J. Appl. Math., vol. 71, no. 4, (2011), pp. 1168-1203.
[34] Lubelski, A. Klafter, J.. Fluorescence recovery after photobleaching: the case of anomalous diffusion. Biophys. J., vol. 94, no. 12, (2008), pp. 4646-4653.
[35] Kolmogoroff, A., Petrovsky, I., Piscounoff, N.. Étude de l’équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique. Moscow Univ. Bull. Math, vol. 1, (1937), pp. 1-25.
[36] Fisher, R.. The wave of advance of advantageous genes. Ann. Hum. Genet., vol. 7, no. 4, (1937), pp. 355-369.
[37] D. Ben-Avraham, S. Havlin. Diffusion and reactions in fractals and disordered systems. Cambridge University Press, 2000.
[38] Vlad, M. O., Ross, J.. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of neolithic transition. Phys. Rev. E, vol. 66, no. 6, (2002), p. 061908.
[39] Angstmann, C. N., Donnelly, I. C., Henry, B. I.. Pattern formation on networks with reactions: A continuous time random walk approach. Phys. Rev. E, vol. 87, no. 3, (2012), p. 032804.
[40] Fedotov, S., Falconer, S.. Subdiffusive master equation with space-dependent anomalous exponent and structural insta- bility. Phys. Rev. E, vol 85, no. 3, (2012), p. 031132.
[41] Scher, H., Lax, M.. Stochastic transport in a disordered solid. I. Theory. Phys. Rev. B, vol. 7, (1973), pp. 4491-4502.
[42] Yadav, A., Horsthemke, W.. Kinetic equations for reaction-subdiffusion systems: Derivation and stability analysis. Phys. Rev. E, vol. 74, no. 6, (2006), p. 066118.
[43] Chechkin, A. V., Gorenflo, R., Sokolov, I. M.. Fractional diffusion in inhomogeneous media. J. Phys. A, vol. 38, (2005), p. L679.
[44] Berkowitz, B., Cortis, A., Dentz, M., Scher, H.. Modelling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys., vol. 44, (2006), p. RG2003.
[45] Scalas, E., Gorenflo, R., Mainardi, F., Raberto, M.. Revisiting the derivation of the fractional diffusion equation. Fractals, vol. 11, (2003), pp. 281-289.
[46] Hildebrandt, T. H.. Definitions of Stieltjes integrals of the Riemann type. The Amer. Math. Monthly, vol. 45, (1938), p. 265.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed