Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T10:30:22.916Z Has data issue: false hasContentIssue false

Dense Granular Poiseuille Flow

Published online by Cambridge University Press:  18 July 2011

E. Khain*
Affiliation:
Department of Physics, Oakland University, Rochester MI 48309, USA
*
Corresponding author. E-mail: khain@oakland.edu
Get access

Abstract

We consider a dense granular shear flow in a two-dimensional system. Granular systems(composed of a large number of macroscopic particles) are far from equilibrium due toinelastic collisions between particles: an external driving is needed to maintain themotion of particles. Theoretical description of driven granular media is especiallychallenging for dense granular flows. This paper focuses on a gravity-driven densegranular Poiseuille flow in a channel. A special focus here is on the intriguingphenomenon of fluid-solid coexistence: a solid plug in the center of the system,surrounded by fluid layers. To find and analyze various flow regimes, a multi-scaleapproach is taken. On macro scale, granular hydrodynamics is employed. On micro scale,event-driven molecular dynamics simulations are performed. The entire phase diagram ofparameters is explored, in order to determine which flow regime occurs in various regionsin the parameter space.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Haff, P. K.. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech., 134 (1983), 401430. CrossRefGoogle Scholar
Jenkins, J. T., Richman, M. W.. Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids, 28 (1985), 348594. CrossRefGoogle Scholar
S. Chapman, T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. Cambridge Univ. Press, Cambridge, 1990.
N. V. Brilliantov, T. Pöschel. Kinetic Theory of Granular Gases. Oxford University Press, Oxford, 2004; Granular Gas Dynamics edited by T. Pöschel, N. Brilliantov. Springer, Berlin, 2003.
Goldhirsch, I., Zanetti, G.. Clustering instability in dissipative gases. Phys. Rev. Lett., 70 (1993), 16191622. CrossRefGoogle ScholarPubMed
Khain, E., Meerson, B.. Symmetry–breaking instability in a prototypical driven granular gas. Phys. Rev. E, 66 (2002), 021306. CrossRefGoogle Scholar
Khain, E., Meerson, B., Sasorov, P. V.. Phase diagram of van der Waals–like phase separation in a driven granular gas. Phys. Rev. E, 70 (2004), 051310. CrossRefGoogle Scholar
Baskaran, A., Dufty, J. W., Brey, J. J.. Transport coefficients for the hard-sphere granular fluid. Phys. Rev. E, 77 (2008), 031311. CrossRefGoogle ScholarPubMed
Aranson, I. S., Tsimring, L. S.. Patterns and collective behavior in granular media: Theoretical concepts. Rev. Mod. Phys., 78 (2006), 641692. CrossRefGoogle Scholar
Goldhirsch, I.. Rapid granular flows. Annu. Rev. Fluid Mech., 35 (2003), 267293. CrossRefGoogle Scholar
Grossman, E. L., Zhou, T., Ben-Naim, E.. Towards granular hydrodynamics in two dimensions. Phys. Rev. E, 55 (1997), 42004206. CrossRefGoogle Scholar
Luding, S.. Global equation of state of two-dimensional hard sphere systems. Phys. Rev. E, 63 (2001), 042201. CrossRefGoogle ScholarPubMed
Meerson, B., Pöschel, T., Bromberg, Y.. Close-packed floating clusters: Granular hydrodynamics beyond the freezing point? Phys. Rev. Lett., 91 (2003), 024301. CrossRefGoogle ScholarPubMed
Eshuis, P., van der Weele, K., van der Meer, D., Lohse, D.. Granular Leidenfrost effect: Experiment and theory of floating particle clusters. Phys. Rev. Lett., 95 (2005), 258001. CrossRefGoogle Scholar
Bocquet, L., Losert, W., Schalk, D., Lubensky, T. C., Gollub, J. P.. Granular shear flow dynamics and forces: Experiment and continuum theory. Phys. Rev. E, 65 (2002), 011307. Google Scholar
Bocquet, L., Errami, J., Lubensky, T. C.. Hydrodynamic model for a dynamical jammed-to-flowing transition in gravity driven granular media. Phys. Rev. Lett., 89 (2002), 184301. CrossRefGoogle ScholarPubMed
Garcia-Rojo, R., Luding, S., Brey, J. J.. Transport coefficients for dense hard-disk systems. Phys. Rev. E, 74 (2006), 061305. CrossRefGoogle ScholarPubMed
Khain, E.. Hydrodynamics of fluid-solid coexistence in dense shear granular flow. Phys. Rev. E, 75 (2007), 051310. CrossRefGoogle ScholarPubMed
Luding, S.. Towards dense, realistic granular media in 2D. Nonlinearity, 22 (2009), No. 12, R101R146. CrossRefGoogle Scholar
Khain, E., Meerson, B.. Shear-induced crystallization of a dense rapid granular flow: Hydrodynamics beyond the melting point. Phys. Rev. E, 73 (2006), 061301. CrossRefGoogle ScholarPubMed
Alam, M., Shukla, P., Luding, S.. Universality of shear-banding instability and crystallization in sheared granular fluid. J. Fluid Mech., 615 (2008), 293. CrossRefGoogle Scholar
Khain, E.. Bistability and hysteresis in dense shear granular flow. Europhys. Lett., 87 (2009), 14001. CrossRefGoogle Scholar
Alam, M., Nott, P. R.. Stability of plane Couette flow of a granular material. J. Fluid Mech., 377 (1998), 99136. CrossRefGoogle Scholar
Alam, M., Luding, S.. First normal stress difference and crystallization in a dense sheared granular fluid. Phys. Fluids, 15 (2003), 22982312. CrossRefGoogle Scholar
Wang, C. H., Jackson, R., Sundaresan, S.. Instabilities of fully developed rapid flow of a granular material in a channel. J. Fluid Mech., 342 (1997), 179197. CrossRefGoogle Scholar
Wang, C. H., Tong, Z. Q.. On the density waves developed in gravity channel flows of granular materials. J. Fluid Mech., 435 (2001), 217246. CrossRefGoogle Scholar
Denniston, C., Li, H.. Dynamics and stress in gravity-driven granular flow. Phys. Rev. E, 59 (1999), 32893292. CrossRefGoogle Scholar
Drozd, J. J., Denniston, C.. Simulations of collision times in gravity-driven granular flow. Europhys. Lett., 76 (2006), 360. CrossRefGoogle Scholar
Tsai, J. C., Losert, W., Voth, G. A., Gollub, J. P.. Two-dimensional granular Poiseuille flow on an incline: Multiple dynamical regimes. Phys. Rev. E, 65 (2002), 011306. Google ScholarPubMed
Vijayakumar, K. C., Alam, M.. Velocity distribution and the effect of wall roughness in granular Poiseuille flow. Phys. Rev. E, 75 (2007), 051306. CrossRefGoogle ScholarPubMed
Chikkadi, V., Alam, M.. Slip velocity and stresses in granular Poiseuille flow via event-driven simulation. Phys. Rev. E, 80 (2009), 021303. CrossRefGoogle ScholarPubMed
Liss, E. D., Conway, S. L., Glasser, B. J.. Density waves in gravity-driven granular flow through a channel. Phys. Fluids, 14 (2002), 33093326. CrossRefGoogle Scholar
Alam, M., Chikkadi, V., Gupta, V. K.. Density waves and the effect of wall roughness in granular Poiseuille flow: Simulation and linear stability. EPJ St, 179 (2009), 6990. Google Scholar
Brey, J. J., Moreno, F., Dufty, J. W.. Model kinetic equation for low-density granular flow. Phys. Rev. E, 54 (1996), 445456. CrossRefGoogle ScholarPubMed
Sela, N., Goldhirsch, I. Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech., 361 (1998) 4174. CrossRefGoogle Scholar