Skip to main content Accessibility help

Triangulated polygons and frieze patterns

  • J. H. Conway (a1) and H. S. M. Coxeter (a2)


  • An abstract is not available for this content so a preview has been provided below. Please use the Get access link above for information on how to access this content.



Hide All
1. Böhm, J., Zu Coxeters Integrationsmethode in Räumen, gekrümmten, Math. Nachr. 27, 179214 (1964).
2. Brown, W. G., Historical note on a recurrent combinatorial problem, Am. math. Mon. 72, 973977 (1965).
3. Coxeter, H. S. M., On Schläfli’s generalization of Napier’s Pentagramma Mirificum, Bull. Calcutta math. Soc. 28, 123144 (1936).
4. Coxeter, H. S. M., Cyclic sequences and frieze patterns, Vinculum 8, 47 (Melbourne, 1971).
5. Coxeter, H. S. M., Frieze patterns, Acta with. 18, 297310 (1971).
6. Euler, Leonhard, Commentationes geometricae 1, XVIXVIII (Lausanne, 1953): review of Segner, A. de, Enumeratio modorum, quibus figurae planae recitilineae per diagonales dividuntur in triangula.
7. Forder, H. G., Some problems in combinatorics, Mathl Gaz. XLV, 199201 (No. 353, October 1961).
8. Harary, F., Graph Theory. Addison-Wesley (1969).
9. Harary, F. G. Prins and Tutte, W. T., The number of plane trees, K. Ned. Akad. Wetensch. Proc. A67, 319329 (1964).
10. Lyness, R. C., Notes 1581; 1847; 2952, Mathl Gaz. XXVI, 62 (No. 268, February 1942); XXIX, 231 (No. 287, December 1945); XLV, 207209 (No. 353, October 1961).
11. Moon, J. W. and Moser, Leo, Triangular dissections of n-gons, Can. math. Bull. 6, 175178 (1963).
12. Polya, G., Mathematics and Plausible Reasoning, Vol. 1; Induction and Analogy in Mathematics. Princeton University Press (1954).
13. Prešić, S. and Mikrinović, D. S., Sur une équation fonctionelle cyclique d’ordre supérieure, Publikacijc elektroteh. Fak. Univ. Beogr., Ser. Math.-Phys. 70 (1962).
14. van der Waerden, B. L., Science Awakening. Oxford University Press (New York, 1961).

Triangulated polygons and frieze patterns

  • J. H. Conway (a1) and H. S. M. Coxeter (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed