Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T15:09:25.694Z Has data issue: false hasContentIssue false

On the Routh-Steiner theorem and some generalisations

Published online by Cambridge University Press:  13 March 2015

Elias Abboud*
Affiliation:
Beit Berl College, Doar Beit Berl 44905, Israel e-mail: eabboud@beitberl.ac.il

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
Copyright © Mathematical Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Coxeter, H. S. M., Introduction to geometry (2nd edn.) Wiley, New York (1969).Google Scholar
2. Steiner, J., Gesammelte Werke, Vol. 1, Reimer, Berlin (1882).Google Scholar
3. Routh, E. J., A treatise on analytical statics with numerous examples, Vol. 1 (2nd edn.) Cambridge University Press (1896).Google Scholar
4. Bényi, A. and Ćurgus, B., A generalization of Routh's triangle theorem, The American Mathematical Monthly 9 (2013) pp. 841846.Google Scholar
5. Walter, M., Reader reflections: Marion's theorem, Mathematics teacher 86 (1993) p. 619.Google Scholar
6. Watanabe, T., Hanson, R. and Nowosielski, F. D., Morgan's theorem, Mathematics teacher 89 (1996) pp. 420423.Google Scholar
7. De Villiers, M., Feedback: Feynman's Triangle, Math. Gaz. 89 (March 2005) p. 107.Google Scholar