Skip to main content Accessibility help
×
Home

A generalisation of Ioachimescu’s constant

  • Alina Sȋntămărian (a1)

Extract

In the problem proposed by A. G. Ioachimescu in 1895, it is asked to be shown that the sequence , defined by , for each , is convergent and its limit lies between -2 and -1.

There have been given many generalisations and other results regarding Ioachimescu’s problem in the literature (see, for example, [2], [3], [4, Theorem 1, parts (a) and (b)], [5, problem P2, parts (i) and (ii)],).

Copyright

References

Hide All
1. Ioachimescu, A. G., Problem 16, Gazeta Matematicá 1 (2), 1895, p. 39.
2. Bătineţu-Giurgiu, D. M., Problem 22692, Gazeta Matematicá, Seria B, 97 (7–8) (1992) p. 287.
3. Bătineţu-Giurgiu, D. M., Problem C: 1525, Gazeta Matematicá, Seria B, 99 (4) (1994) p. 191.
4. Bătineţu-Giurgiu, D. M., Probleme vechi, soluţii şi generalizări noi (Old problems, new generalisations and solutions), Gazeta Matematică, Seria B, 100 (5) (1995) pp. 199206.
5. Berinde, V., Asupra unei probleme a lui A. G. Ioachimescu (On a problem of A. G. Ioachimescu), Gazeta Matematică, Seria B, 99 (7) (1994) pp. 310313.
6. Acu, D., Asupra unei problème a lui A. G. Ioachimescu (On a problem of A. G. Ioachimescu), Gazeta Matematică, Seria B, 100 (9) (1995q) pp. 418421.
7. Rizzoli, I., O teoremă Stolz-Cesàro (A Stolz-Cesàro theorem), Gazeta Matematică, Seria B, 95 (10–11–12) (1990) pp. 281284.
8. Becheanu, M., Grigore, Gh., Ianuş, S., Ichim, I., Probleme de algebră, analiză matematică şi geometrie (Algebra, mathematical analysis and geometry problems), Editura Cartea Românească, Bucureşti (1991).
9. Knopp, K., Theory and application of infinite series, Blackie & Son (1951).
10. Bătineţu-Giurgiu, D. M., Pîrşan, L., Radovici-Mărculescu, P., Concursul anual al rezolvitorilor Gazetei Matematică - Piteşti 1994 (partea a doua) (The annual contest of the solvers of Gazeta Matematică – Piteşti 1994 (the second part)), Gazeta Matematică, Seria B, 99 (12) (1994) pp. 530544.

A generalisation of Ioachimescu’s constant

  • Alina Sȋntămărian (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed