Skip to main content Accessibility help

Average lengths for the two-player Name Game

  • David K. Neal (a1)


In the Name Game, letters of the alphabet are drawn at random, and a player marks off all occurrences of the letter in his name as it is called. The winner is the player whose name is deleted first; but a tie can occur when players' names have letters in common. For the two-player game, the probability of a player winning depends not only on the length of his own name but on how many letters occur only in the other player's name. (See [1] for probabilities involving more players.) For example, if Stephanie plays against Georges, then there are 11 letters in the union, 2 in the intersection, 3 that are in Georges but not Stephanie, and 6 that are in Stephanie but not Georges. In this case, the probability of a tie is 2/11, the probability of Stephanie winning is 3/11, and the probability of Georges winning is 6/11. These probabilities are easily derived by considering the 11! permutations of the letters in the union.



Hide All
1. Hopkins, David, Probabilities for the Name Game, Math. Gaz. 77 (July 1993) pp. 237241.

Related content

Powered by UNSILO

Average lengths for the two-player Name Game

  • David K. Neal (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.