Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T18:11:44.241Z Has data issue: false hasContentIssue false

88.52 Some properties of finite Fibonacci sequences

Published online by Cambridge University Press:  01 August 2016

Dominic Vella
Affiliation:
194 Buckingham Road, Bletchley, Milton Keynes, MK3 5JB, email: fibonacci@thevellas.com
Alfred Vella
Affiliation:
194 Buckingham Road, Bletchley, Milton Keynes, MK3 5JB, email: fibonacci@thevellas.com

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heard, T. and Martin, D., Pure mathematics 6, Hodder and Stoughton (1998).Google Scholar
2. Wall, D. D., Am. Math. Month. 67 (1960) p. 525.CrossRefGoogle Scholar
3. Richards, I. M., Math. Spectrum 24 (1991) p. 48.Google Scholar
4. Körner, T. W., The pleasures of counting, Cambridge University Press (1996).Google Scholar
5. Vajda, S., Fibonacci and Lucas numbers, and the Golden Section: theory and applications, Halstead Press (1989).Google Scholar
6. Vella, D. and Vella, A., Math. Mag. 75 (2002) p. 294.Google Scholar
7. Knott, R., Fibonacci and Golden Ratio equations [online], available from http://www.mcs.surrey.ac.Uk/personal/R.Knott/Fibonacci [Valid 16th August, 2004].Google Scholar
8. Niven, I. and Zuckerman, H. S., An introduction to the theory of numbers, Wiley (1972).Google Scholar
9. Ehrlich, A., Fib. Quart. 27 (1989) p. 11.Google Scholar