Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:04:34.624Z Has data issue: false hasContentIssue false

85.30 The four number game and Pascal’s triangle

Published online by Cambridge University Press:  01 August 2016

Jun Ji
Affiliation:
School of Mathematical Sciences, Queen Mary and Westfield College, Mile End Road, London El 4NS. e-mails: junji@valdosta.edu, ckicey@valdosta.edu
Charles Kicey
Affiliation:
School of Mathematical Sciences, Queen Mary and Westfield College, Mile End Road, London El 4NS. e-mails: junji@valdosta.edu, ckicey@valdosta.edu

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wills, H. Diffy, , The Arithmetic Teacher (1971) pp. 402405.Google Scholar
2. Thwaites, B. Two conjectures or how to win £1100, Math. Gaz. 80 (March 1996) pp. 3536.Google Scholar
3. Thwaites, B. Letter to the Editor, Math. Gaz. 80 (July 1996) p. 420.Google Scholar
4. Pompili, F. Evolution of finite sequences of integers, Math. Gaz. 80 (July 1996) pp. 322332.Google Scholar
5. Ciamberlini, C. and Marengoni, A. Su una interessante curiosita numérica, Periodiche di Matematiche 17 (1937) pp. 2530.Google Scholar
6. Freedman, B. The four number game, Scripta Math. 14 (1948) pp. 3547.Google Scholar
7. Lotan, M. A problem in difference sets, Amer. Math. Monthly 56 (1949) pp. 535541.Google Scholar
8. Fine, N. J. Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947) pp. 589592.Google Scholar
9. Wolfram, S. Geometry of binomial coefficients, Amer. Math. Monthly 91 (1984) pp. 566571.Google Scholar
10. Ludington-Young, A. Length of the n-number game, Fibonacci Quarterly 28 (1990) pp. 259265.Google Scholar
11. McLean, K. R. Playing Diffy with real sequences, Math. Gaz. 83 (March 1999) pp. 5868.Google Scholar