Skip to main content Accessibility help
×
Home

Threshold currents of nitride vertical-cavity surface-emitting lasers with various active regions

  • Pawe ,Ma kowiak (a1) and W ,odzimierz Nakwaski (a1)

Abstract

A detailed threshold analysis of room-temperature pulsed operation of GaN/AlGaN/AlN vertical-cavity surface-emitting lasers (VCSELs) is carried out. The model takes advantage of the latest results concerning gain in active regions, material absorption in the cladding layers, as well as cavity diffraction and scattering losses. The simulation showed that although VCSELs with single (S) or multiple (M) quantum-well (QW) active regions exhibit lower threshold currents, they are much more sensitive to any increase in optical losses than their bulk counterparts. In particular, decreasing the active region radius of gain-guided QW VCSELs below 5 μm (which increases diffraction losses) or increasing dislocation densities (which, in turn, raises scattering losses) gives an enormous rise to their threshold currents. Therefore small-size GaN VCSELs should have an index-guided structure. In the case of MQW VCSELs, the optimal number of quantum wells strongly depends on the reflectivities of resonator mirrors. According to our study, MQW GaN lasers usually require noticeably lower threshold currents compared to SQW lasers. The optimal number of QW active layers is lower in laser structures exhibiting lower optical losses. Although the best result occurred for an active region thickness of 4 nm, threshold currents for the various sizes differ insignificantly.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Threshold currents of nitride vertical-cavity surface-emitting lasers with various active regions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Threshold currents of nitride vertical-cavity surface-emitting lasers with various active regions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Threshold currents of nitride vertical-cavity surface-emitting lasers with various active regions
      Available formats
      ×

Copyright

References

Hide All
[1] Strite, S., Morkoç, H., J. Vac. Sci. Technol. B 10, 1237-1266 (1992).
[2] Terris, B. D., Mamin, H. J., Rugar, D., Appl. Phys. Lett. 68, 141 (1996).
[3] Nakamura, S, Senoh, M, Nagahama, S, Iwasa, N, Yamada, T, Matsushita, T, Kiyoku, H, Sugimoto, Y, Jpn. J. Appl. Phys. 35, L74-L76 (1996).
[4] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., Kiyoku, H., Appl. Phys. Lett. 69, 4056-4058 (1996).
[5] Nakamura, Shuji, MRS Internet J. Nitride Semicond. Res. 2, 5 (1997).
[6] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., “InGaN/GaN/AlGaN-Based Laser Diodes with an Estimated Lifetime of 10000 Hours”, 10th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS’97, San Francisco, 10-13 Nov. 1997, Paper PD1.1
[7] Lester, S. D., Ponce, F. A., Craford, M. G., Steigerwald, D. A., Appl. Phys. Lett. 66, 1249-1251 (1995).
[8] Pankove, J. I., MRS Internet J. Nitride Semicond. Res. 2, 19 (1997).
[9] Redwing, Joan M., Loeber, David A. S., Anderson, Neal G., Tischler, Michael A., Flynn, Jeffrey S., Appl. Phys. Lett. 69, 1-3 (1996).
[10] Asif Khan, M., Krishnankutty, S., Skogman, R. A., Kuznia, J. N., Olson, D. T., George, T., Appl. Phys. Lett. 65, 520-521 (1994).
[11] Honda, T, Katsube, A, Sakaguchi, T, Koyama, F, Iga, K, Jpn. J. Appl. Phys. 34, 3527-3532 (1995).
[12] Mroziewicz, B., Bugajski, M., Nakwaski, W., “Physics of Semiconductor Lasers” (North Holland, Amsterdam 1991). Chapter 4.1.9
[13] Babic, D. I., Corzine, S. W., IEEE J. Quantum Electron. 28, 514 (1992).
[14] Born, M., Wolf, E., “Principles of Optics”, (Pergamon Press, New York 1993). Sec. 1.6.5
[15] Babic, D. I., Chung, Y., Dagli, N., Bowers, J. E., IEEE J. Quantum Electron. 29, 1950 (1993).
[16] Yu, G., Wang, G., Ishikawa, H., Umeno, M., Soga, T., Egawa, T., Watanabe, J., Jimbo, T., Appl. Phys. Lett. 70, 3209 (1997).
[17] Chichibu, S., Mizutani, T., Shioda, T., Nakanishi, H., Deguchi, T., Azuhata, T., Sota, T., Nakamura, S., Appl. Phys. Lett. 70, 3440-3442 (1997).
[18] Fischer, A. J., Shan, W., Song, J. J., Chang, Y. C., Horning, R., Goldenberg, B., Appl. Phys. Lett. 71, 1981 (1997).
[19] Bougrov, V. E., Zubrilov, A. S., J. Appl. Phys. 81, 2952 (1997).
[20] Yoshida, S., Misawa, S., Gonda, S., J. Appl. Phys. 53, 6844 (1982).
[21] Frankowski, G., Steuber, F., Härle, V., Scholz, F., Hangleiter, A., Appl. Phys. Lett. 68, 3746 (1986).
[22] Ambacher, O., Arzberger, M., Brunner, D., Angerer, H., Freudenberg, F., Esser, N., Wethkamp, T., Wilmers, K., Richter, W., Stutzmann, M., MRS Internet J. Nitride Semicond. Res. 2, 22 (1997).
[23] Pankove, J. I., Bloom, S., Harbeke, G., RCA Rev. 36, 163 (1975).
[24] Liau, ZL, Aggarwal, RL, Maki, PA, Molnar, RJ, Walpole, JN, Williamson, RC, Melngailis, I, Appl. Phys. Lett. 69, 1665-1667 (1996).
[25] Zheleva, Tsvetanka S., Nam, Ok-Hyun, Bremser, Micheal D., Davis, Robert F., Appl. Phys. Lett. 71, 2472-2474 (1997).
[26] Marchand, Hugues, Ibbetson, J.P., Fini, Paul T., Kozodoy, Peter, Keller, S., DenBaars, Steven, Speck, J. S., Mishra, U. K., MRS Internet J. Nitride Semicond. Res. 3, 3 (1998).
[27] Meney, A. T., O’Reilly, E. P., Appl. Phys. Lett. 67, 3013-3015 (1995).
[28] Uenoyama, T., Suzuki, M., Proc. SPIE 2994, 94 (1997).
[29] Coldren, L. A., Corzine, S. W., “Diode Lasers and Photonic Integrated Circuits”, (J. Wiley & Sons, New York,1995). Chapter 5.2.2
[30] Haug, A., IEEE J. Quantum Electron. QE-21, 716 (1985).
[31] Zou, Y., Osinski, J. S., Grodzinski, P., Dapkus, P. D., Rideout, W. C., Sharfin, W. F., Schlafer, J., Crawford, F. D., IEEE J. Quantum Electron. 29, 1565 (1993).
[32] Mozer, A. P., Hausser, S., Pilkuhn, M. H., IEEE J. Quantum Electron. QE-21, 719 (1985).
[33] Dmitriev, Alexey V., Oruzheinikov, Alexander L., MRS Internet J. Nitride Semicond. Res. 1, 46 (1996).
[34] Petermann, K.Laser Diode Modulation and Noise”,: (Kluver Academic Publishers/KTK Scientific Publishers, Dordrecht/Tokyo, 1991)
[35] Yeo, YC, Chong, TC, Li, MF, Fan, WJ, J. Appl. Phys. 84, 1813-1819 (98).
[36] Suzuki, M, Uenoyama, T, Jpn. J. Appl. Phys. 35, 1420 (1996).
[37] Suzuki, M., Uenoyama, T., J. Appl. Phys. 80, 6868-6874 (1996).
[38] Hangleiter, Andreas, Im, Jin Seo, Kollmer, H., Heppel, S., Off, J., Scholz, Ferdinand, MRS Internet J. Nitride Semicond. Res. 3, 15 (1998).
[39] Chichibu, S., Cohen, D. A., Mack, M. P., Abare, A. C., Kozodoy, P., Minsky, M., Fleischer, S., Keller, S., Bowers, J. E., Mishra, U. K., Coldren, L. A., Clarke, D. R., DenBaars, S. P., Appl. Phys. Lett. 73, 496 (1998).
[40] Chichibu, Shigefusa, Sota, Takayuki, Wada, Kazumi, Nakamura, Shuji, J. Vac. Sci. Technol. B 16, 2204-2214 (1998).
[41] Domen, K., Kuramata, A., Soejima, R., Horino, K., Kubota, S., Tanahashi, T., IEEE J. Selected Topics Quantum Electron. 4, 490 (1998).
[42] Pastrnak, J., Roskovcova, L., Phys. Stat. Sol. 14, K5 (1966).
[43] Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., Burns, M., J. Appl. Phys. 76, 1363-1398 (1994).
[44] Wierer, J. J., Evans, P. W., Holonyak, N., Kellog, D. A., Appl. Phys. Lett. 71, 3468 (1997).
[45] Nakwaski, W., “Some Unsolved Problems Associated with Designing of Nitride Lasers (invited paper)”, Opto-Electron. Rev. 6, 93 (1998)
[46] Smith, M, Lin, JY, Jiang, HX, Khan, MA, Appl. Phys. Lett. 71, 635 (1997).
[47] Nakwaski, W., Appl. Phys. A 61, 123 (1995).
[48] Mackowiak, P., Nakwaski, W., Electron Tech. 30, 314 (1997).
[49] Bour, D. P., Kneissl, M., Romano, L. T., McCluskey, M. D., Van deWalle, C. C., Krusor, B. S., Donaldson, R. M., Walker, J., Dunnrowicz, C. J., Johnson, N. M., IEEE J. Selected Topics Quantum Electron. 4, 498 (1998).
[50] Landolt-Börnstein, , “Numerical Data and Functional Relationships in Science and Technology, New Series 17 ”, Springer-Verlag, Berlin (1982)

Keywords

Related content

Powered by UNSILO

Threshold currents of nitride vertical-cavity surface-emitting lasers with various active regions

  • Pawe ,Ma kowiak (a1) and W ,odzimierz Nakwaski (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.