Skip to main content Accessibility help
×
Home

Thermal Stability of GaN Investigated by Raman Scattering

  • M. Kuball (a1), F. Demangeot (a2), J. Frandon (a2), M.A. Renucci (a2), N. Grandjean (a3) and O. Briot (a4)...

Abstract

We have investigated the thermal stability of GaN using Raman scattering. Noninvasive optical monitoring of the degradation of GaN during high-temperature processing has been demonstrated. GaN samples grown by molecular-beam epitaxy (MBE) and metalorganic vapor phase epitaxy (MOCVD) were studied. Characteristic features in the Raman spectrum identify three thermal stability regimes: (1) annealing below 900°C does not affect the GaN Raman spectrum; (2) annealing between 900°C and 1000°C results in the appearance of disorder-induced Raman scattering between the E2 and A1(LO) phonon; (3) annealing at temperatures higher than 1000°C gives rise to distinct Raman modes at 630 cm−1, 656 cm−1 and 770 cm−1. The evolution of the Raman spectrum of GaN with increasing annealing temperature is discussed in terms of disorder-induced Raman scattering. We find clear indications for an interfacial reaction between GaN and sapphire for annealing temperatures higher than 1000°C.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Thermal Stability of GaN Investigated by Raman Scattering
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Thermal Stability of GaN Investigated by Raman Scattering
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Thermal Stability of GaN Investigated by Raman Scattering
      Available formats
      ×

Copyright

Footnotes

Hide All

MRS Internet J. Nitride Semicond. Res. 4S1, G6.28

Footnotes

References

Hide All
[1] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., Chocho, K., Appl. Phys. Lett. 72, 211 (1998).
[2] Song, Y.-K., Kuball, M., Nurmikko, A.V., Bulman, G.E., Doverspike, K., Shappard, S.T., Weeks, T.W., Leonard, M., Kong, H.S., Dieringer, H., and Edmonds, J., Appl. Phys. Lett. 72, 1418 (1998).
[3] Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).
[4] Khan, M.A., Chen, Q., Skogman, R.A., and Kuznia, J.N., Appl. Phys. Lett. 66, 2046 (1995).
[5] Kuball, M., Demangeot, F., Frandon, J., Renucci, M.A., Massies, J., Grandjean, N., Aulombard, R.L., and Briot, O., Appl. Phys. Lett. 73, 960 (1998).
[6] Zolper, J.C., Crawford, M. Hagerott, Howard, A.J., Ramer, J., and Hersee, S.D., Appl. Phys. Lett. 68, 200 (1996).
[7] Hong, J., Lee, J.W., MacKenzie, J.D., Donovan, S.M., Abernathy, C.R., Pearton, S.J., and Zolper, J.C., Semicond. Sci. Technol. 12, 1310 (1997).
[8] Siegle, H., Kaczmarczyk, G., Filippidis, L., Litvinchuk, A.P., Hoffmann, A., and Thomsen, C., Phys. Rev. B 55, 7000 (1997).
[9] Azuhata, T., Matsunaga, T., Shimada, K., Yoshida, K., Sota, T., Suzuki, K., and Nakamura, S. , Physica B 219&220, 493 (1996).
[10] Lin, M.E., Sverdiov, B.N., and Morkoç, H., Appl. Phys. Lett. 63, 3625 (1993).
[11] Demangeot, F., Frandon, J., Renucci, M.A., Briot, O., Gil, B., Aulombard, R.-L., MRS Internet J. Nitride Semicond. Res. 1, 23 (1996).
[12] Barker, A. S., Jr., Phys. Rev. 132, 1474 (1963).
[13] Grabner, L., J. Appl. Phys. 49, 580 (1978).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed