Skip to main content Accessibility help

Suppression of phase separation in InGaN due to elastic strain

  • S. Yu. Karpov (a1)


The effect of elastic strain in epitaxial InGaN layers coherently grown on GaN wafers on spinodal decomposition of the ternary compound is examined. The effect results in considerable suppression of phase separation in the strained InGaN layers. To predict correctly the position of the miscibility gap in the T-x diagram it is important to take into account the compositional dependence of the elastic constants of the ternary compound. The contribution of the elastic strain to the Gibbs free energy of InGaN is calculated assuming uniform compression of the epitaxial layer with respect to the underlying GaN wafer. The interaction of binary constituents in the solid phase is accounted for on the base of regular solution model. The enthalpy of mixing is estimated using the Valence Force Field approximation. The strain effect becomes stronger with increasing In content in the InGaN. As a result the miscibility gap shifts remarkably into the area of higher InN concentration and becomes of asymmetrical shape. Various growth surface orientations and the type of crystalline structure (wurtzite or sphalerite) provide different effects of the elastic strain on phase separation in ternary compounds.



Hide All
[a] The Valence Force Field model is discussed on page 101 of Ref [12].
[1] Edgar, JH, (Editor), Properties of Group III Nitrides (Electronic Materials Information Service (EMIS), London, 1994) .
[2] Singh, R, Doppalapudi, D, Moustakas, TD, Romano, LT, Appl. Phys. Lett. 70, 1089-1091 (1997).
[3] El-Masry, N. A., Piner, E. L., Liu, S. X., Bedair, S. M., Appl. Phys. Lett. 72, 40 (1998).
[4] Sato, Y, Sato, S, Jpn. J. Appl. Phys. 36, 4295 (1997).
[5] Nakamura, S., Mater. Sci. Eng. B 50, 272 (1997).
[6] Elyukhin, V.A., Nikishin, S.A., Semicond. Sci. Technol. 11, 917-920 (1996).
[7] Ho, I., Stringfellow, G.B., Appl. Phys. Lett. 69, 2701-2703 (1996).
[8] Ho, I. H., Stringfellow, G. B., Mater. Res. Soc. Symp. Proc. 449, 871 (1997).
[9] van Schilfgaarde, M., Sher, A., Chen, A.-B., J. Cryst. Growth 178, 8-31 (1997).
[10] Stringfellow, G. B., J. Phys. Chem. Sol. 34, 1749 (1973).
[11] Matsuoka, T., Appl. Phys. Lett. 71, 105 (1997).
[12] Tsao, J.Y., Materials Fundamentals of Molecular Beam Epitaxy (Academic Press, New York, 1993) .
[13] Larche, F. C., Johnson, W. C., Chiang, C. S., J. Appl. Phys. 64, 5251 (1988).
[14] Karpov, S. Yu., Makarov, Yu. N., Ramm, M. S., Sci. Forum 264/268, 1189-1192 (1988).
[15] Bottomley, D. J., Fons, P., Jpn. J. Appl. Phys. 34, L1616 (1995).
[16] Karpov, S. Yu., Alexeev, A. N., J. Cryst. Growth 162, 15 (1996).
[17] Kim, Kwiseon, Lambrecht, Walter R. L., Segall, Benjamin, Phys. Rev. B 53, 16310-16326 (1996).


Suppression of phase separation in InGaN due to elastic strain

  • S. Yu. Karpov (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed