Skip to main content Accessibility help
×
Home

Spectroscopic Studies in InGaN Quantum Wells

  • S. F. Chichibu (a1) (a2), T. Sota (a3), K. Wada (a4), S. P. DenBaars (a1) and S. Nakamura (a5)...

Abstract

Fundamental electronic modulations in strained wurtzite III-nitride, in particular InxGa1−xN, quantum wells (QWs) were treated to explore the reason why practical InGaN devices emit bright luminescences in spite of the large threading dislocation (TD) density. The emission mechanisms were shown to vary depending on the well thickness L and InN molar fraction x. The electric field across the QW plane, F, which is a sum of the fields due to spontaneous and piezoelectric polarization and the pn junction field, causes the redshift of the ground state resonance energy through the quantum confined Stark effect (QCSE). The absorption spectrum is modulated by QCSE, quantum-confined Franz-Keldysh effect (QCFK), and Franz-Keldysh (FK) effect from the barrires when, for the first approximation, potential drop across the well (FL) exceeds the valence band discontinuity, EV. Under large FL, holes are confined in the triangular potential well formed at one side of the well. This produces apparent Stokes-like shift in addition to the in-plane net Stokes shift on the absorption spectrum. The QCFK and FK further modulate the electronic structure of the wells with L greater than the three dimensional (3D) free exciton (FE) Bohr radius, aB. When FL exceeds EC, both electron (e) and hole (h) confined levels drop into the triangular potential wells at opposite sides of the wells, which reduces the wavefunction overlap. Doping of Si in the barriers partially screens the F resulting in a smaller Stokes-like shift, shorter recombination decay time, and higher emission efficiency. Finally, the use of InGaN was found to overcome the field-induced oscillator strength lowering due to the spontaneous and piezoelectric polarization. Effective in-plane localization of the QW excitons (confined excitons, or quantized excitons) in quantum disk (Q-disk) size potential minima, which are produced by nonrandom alloy potential fluctuation enhanced by the large bowing parameter and F, produces confined e-h pairs whose wavefunctions are still overlapped when L<aB. Their Coulomb interaction is more pronounced for FL<EV.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Spectroscopic Studies in InGaN Quantum Wells
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Spectroscopic Studies in InGaN Quantum Wells
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Spectroscopic Studies in InGaN Quantum Wells
      Available formats
      ×

Copyright

Footnotes

Hide All

MRS Internet J. Nitride Semicond. Res. 4S1, G2.7(1999).

Footnotes

References

Hide All
1 Nakamura, S. and Fasol, G., The Blue Laser Diode, (Springer, Berlin, 1997).
2 for a review, Akasaki, I., and Amano, H., Jpn. J. Appl. Phys. 36, 5393 (1997).
3 Akasaki, I., Sota, S., Sakai, H., Tanaka, T., Koike, M., and Amano, H., Electron. Lett. 32, 1105 (1996).
4 Itaya, K., Onomura, M., Nishio, J., Sugiura, L., Saito, S., Suzuki, M., Rennie, J., Nunoue, S., Yamamoto, M., Fujimoto, H., Kokubun, Y., Ohba, Y., Hatakoshi, G., and Ishikawa, M., Jpn. J. Appl. Phys. 35, L1315 (1996).
5 Bulman, G., Doverspike, K., Sheppard, S., Weeks, T., Kong, H., Dieringer, H., Edmond, J., Brown, J., Schetzina, J. Swindell, , and , J., Electron. Lett. 33, 1556 (1997).
6 Kuramata, A., Domen, K., Soejima, R., Horino, K., Kubota, S., and Tanahashi, T., Jpn. J. Appl. Phys. 36, L1130 (1997).
7 Mack, M., Abare, A., Aizcorbe, M., Kozodoy, P., Keller, S., Mishra, U., Coldren, L., and DenBaars, S., MRS Internet J. Nitride Semicond. Res. 2, 41 (1997); J. Cryst. Growth 180/190, 837 (1998).
8 Nakamura, F., Kobayashi, T., Asatsuma, T., Funato, K., Yanashima, K., Hashimoto, S., Naganuma, K., Miyajima, S. Tomioka, , , T., Morita, E., Kawai, H., and Ikeda, M., J. Cryst. Growth 180/190, 841 (1998).
9 Kneissl, M., Bour, D. P., Johnson, N. M., Romano, L. T., Krusor, B. S., Donaldson, R., Walker, J., and Dunnrowicz, C., Appl. Phys. Lett. 72, 1539 (1998).
10 Kaneko, Yamada, Y., Watanabe, S., Yamaoka, Y., Hidaka, T., Nakagawa, S., Marenger, E., Takeuchi, T., Yamaguchi, S., Amano, H., and Akasaki, I., Proc. 10th IEEE Lasers and Electro-Optics Society Annual Meeting, San Francisco, USA, Nov. 10-13, 1997, PD1.2.
11 application of LEO technique is introduced in several publications. For example, Bauser, E., Thin film growth techniques for low dimensional structures, eds. Farrow, R., Parkin, S., Dobson, P., Neave, J. and Arrott, A. (Plenum, New York, 1987), p. 171.
12 Usui, A., Sunakawa, H., Sakai, A., and Yamaguchi, A., Jpn. J. Appl. Phys. 36, L899 (1997); A. Sakai, H. Sunakawa, and A. Usui, Appl. Phys. Lett. 71, 2259 (1997).
13 Zheleva, T., Nam, O-H., Bremser, M., and Davis, R., Appl. Phys. Lett. 71, 2472 (1997); O-H. Nam, M. Bremser, T. Zheleva, and R. Davis, Appl. Phys. Lett. 71, 2638 (1997).
14 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Umemoto, T. Kozaki, , , H., Sano, M., and Chocho, K., Jpn. J. Appl. Phys. 36, L1568 (1997); Appl. Phys. Lett. 72, 211(1998).
15 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Jpn. J. Appl. Phys. 37, L309 (1998).
16 Marchand, H., Ibbetson, J., Fini, P., Kozodoy, P., Keller, S., DenBaars, S., Speck, J., and Mishra, U., MRS Internet J. Nitride Semicond. Res. 3, 3 (1998); H. Marchand, X. H. Wu, J. Ibbetson, P. Fini, P. Kozodoy, S. Keller, J. Speck, S. DenBaars, and U. Mishra, Appl. Phys. Lett. 73, 747 (1998).
17 Mukai, T., Morita, D., and Nakamura, S., J. Cryst. Growth 189/190, 778 (1998).
18 Mukai, T., Narimatsu, H., and Nakamura, S., Jpn. J. Appl. Phys. 37, L479 (1998).
19 Ponce, F. and Bour, D., Nature 386, 351 (1997).
20 Suzuki, M., Uenoyama, T., and Yanase, A., Phys. Rev. B 52, 8132 (1995).
21 Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).
22 polarity problem has been reviewed in Hellman, E., MRS Internet J. Nitride Semicond. Res. 3,11 (1998).
23 Koukitsu, A., Takahashi, N., Taki, T., and Seki, H., Jpn. J. Appl. Phys. 35, L673 (1996); I-hsiu Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).
24 Osamura, S. Naka, and Murakami, Y., J. Appl. Phys. 46, 3432 (1975); R. Singh, D. Doppalapudi, T. D. Moustakas, and L. Romano, Appl. Phys. Lett. 70, 1089 (1997).
25 properties of localized excitons in InGaN QWs are summarized in previous papers [Chichibu, S., Sota, T., Wada, K., and Nakamura, S., J. Vac. Sci. Technol. B 16, 2204 (1998) and S. Chichibu, A. Abare, M. Mack, M. Minsky, T. Deguchi, D. Cohen, P. Kozodoy, S. Fleischer, S. Keller, J. Speck, J. Bowers, E. Hu, U. Mishra, L. Coldren, S. DenBaars, K. Wada, T. Sota, and S. Nakamura, European Mater. Res. Soc. 98 Spring Meeting, Session L-IV.1, Strasbourg, France, June 16-19 (1998); Mater. Sci. Eng. B (1998; unpublished)]; original papers are S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996); 70, 2822 (1997); 73, 2006 (1998).
26 Jeon, E., Kozlov, V., Song, Y., Vertikov, A., Kuball, M., Nurmikko, A., Liu, H., Chen, C., Kern, R., Kuo, C., and Crawford, M., Appl. Phys. Lett. 69, 4194 (1996); A. Vertikov, A. Nurmikko, K. Doverspike, G. Bulman, and J. Edmond, ibid 73, 493 (1998).
27 Narukawa, Y., Kawakami, Y., Fujita, Sz., Fujita, Sg., and Nakamura, S., Phys. Rev. B 55, R1938 (1997); Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S. Nakamura, Appl. Phys. Lett. 70, 981 (1997).
28 Miller, D. A., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H., and Burrus, C. A., Phys. Rev. Lett. 53, 2173 (1984); Phys. Rev. B 32, 1043 (1985).
29 Takeuchi, T., Takeuchi, H., Sota, S., Sakai, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L177 (1997); T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 36, L382 (1997); Wetzel, C., Amano, H., Akasaki, I., Suski, T., Ager, J., Weber, E., Haller, E., and Meyer, B. K., Mater. Res. Soc. Symp. Proc. 482, 489 (1998).
30 Bergman, J., Saksulv, N., Dalfors, J., Holtz, P., Monemar, B., Amano, H., and Akasaki, I., Mater. Res. Soc. Symp. Proc. 482, 631 (1998).
31 Im, J., Kollmer, H., Off, J., Sohmer, A., Scholz, F., and Hangleiter, A., Phys. Rev. B 57, R9435 (1998).
32 Deguchi, T., Azuhata, T., Sota, T., Chichibu, S., and Nakamura, S., Mater. Sci. Eng. B 50, 251 (1997); Deguchi, T., A. Shikanai, K. Torii, T. Sota, S. Chichibu, and S. Nakamura, Appl. Phys. Lett. 72, 3329(1998).
33 Mohs, G., Aoki, T., Nagai, M., Shimano, R., K-Gonokami, M., and Nakamura, S., Solid State Commun. 104, 643 (1997).
34 Chichibu, S., Cohen, D., Mack, M., Abare, A., Kozodoy, P., Minsky, M., Fleischer, S., Keller, S., Bowers, J., Mishra, U., Coldren, L., Clarke, D., and DenBaars, S., Appl. Phys. Lett. 73, 496 (1998).
35 Haug, H. and Koch, S., Quantum Theory of the Optical and Electronic Properties of Semiconductors, (World Scientific, Singapore, 1990); W. Chow, S. W. Koch, and M. Sargent III, Semiconductor-Laser Physics, (Springer, Berlin, 1994); W. Chow, A. Wright, and J. Nelson, Appl. Phys. Lett. 68, 296 (1996).
36 Frankowsky, G., Steuber, F., Härle, V., Scholz, F., and Hangleiter, A., Appl. Phys. Lett. 68, 3746 (1996).
37 Wiesmann, D., Brener, I., Pfeiffer, L., Kahn, M., and Sun, C., Appl. Phys. Lett. 69, 3384 (1996).
38 Kuball, M., Jeon, E., Song, Y., Nurmikko, A., Kozodoy, P., Abare, A., Keller, S., Coldren, L., Mishra, U., DenBaars, S., and Steigerwald, D., Appl. Phys. Lett. 70, 2580 (1997).
39 Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., J. Appl. Phys. 79, 2784 (1996); Proc. Int. Symp. On Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1996), pp.202; S. Chichibu, H. Okumura, S. Nakamura, G. Feuillet, T. Azuhata, T. Sota, and S. Yoshida, Jpn. J. Appl. Phys. 36, 1976 (1997).
40 Monemar, B., Bergman, J. P., Amano, H., Akasaki, I., Detchprohm, T., Hiramatsu, K., and Sawaki, N., Proc. Int. Symp. on Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1996), pp. 135.
41 Dingle, R., Sell, D. D., Stokowski, S. E., and Ilegems, M., Phys. Rev. B 4, 1211 (1971).
42 Monemar, B., Phys. Rev. B 10, 676 (1974).
43 Chichibu, S., Shikanai, A., Azuhata, T., Sota, T., Kuramata, A., Horino, K., and Nakamura, S., Appl. Phys. Lett. 68, 3766 (1996); A. Shikanai, T. Azuhata, T. Sota, S. Chichibu, A. Kuramata, K. Horino, and S. Nakamura, J. Appl. Phys. 81, 417 (1997).
44 Bastard, G., Mendez, E. E., Chang, L. L., and Esaki, L., Phys. Rev. B 26 (1982) 1974.
45 Miller, D. A. B., Chemla, D. S., and Schmitt-Rink, S., Phys. Rev. B 33 (1986) 6976.
46 Eb in GaN / Al0.1Ga0.9N QW was calculated according to Ref. 44 using a variational method. We further consider the finite well potential. An usual variational function with two variational parameters was used as an envelop function of exciton, i.e. exp{−[r2/a2-(ze−zh)2/b2]}, where a and b are the variational parameters, r is the absolute value of the relative position of electron and hole in the QW plane, and ze (zh) is the transformed z coordinate of the electron (hole).
47 Van de Walle, C. G. and Neugebauer, J., Appl. Phys. Lett. 70, 2577 (1997).
48 Taguchi, T., presented at the 43rd Spring Meeting of the Japan Society of Applied Physics and Related Societies, Asaka, Japan, Mar.29, 1996 (unpublished).
49 Mukai, T., Yamada, M., and Nakamura, S., Jpn. J. Appl. Phys. 37, L1358 (1998).
50 Bulutay, C., Dagli, N., and Imamoðlu, A., IEEE J. of Quantum Electron. QE (1999) (unpublished).
51 Chichibu, S., Wada, K., and Nakamura, S., Appl. Phys. Lett. 71, 2346 (1997).
52 Sugawara, M., Phys. Rev. B 51, 10743 (1995).
53 Rosner, S., Carr, E., Ludwise, M., Girolami, G., and Erikson, H., Appl. Phys. Lett. 70, 420 (1997).
54 Speck, J., Marchand, H., Kozodoy, P., Fini, P., Wu, X., Ibbetson, J., Keller, S., DenBaars, S., Mishra, U., and Rosner, S., Proc. 2nd Int. Symp. on Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1998), pp. 37.
55 Sato, H., Sugahara, T., Naoi, Y., and Sakai, S., Jpn. J. Appl. Phys. 37, 2013 (1998).
56 their results are summarized in Kisielowski, C., Proc. 2nd Int. Symp. on Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1998), pp. 321.
57 Ponce, F., Galloway, S., Goetz, W., and Kern, R., Mater. Res. Soc. Symp. Proc. 482, 625 (1998).
58 Keller, S., Keller, B., Minsky, M., Bowers, J., Mishra, U., DenBaars, S, and Seifert, W., J. Cryst. Growth 189/190, 29 (1998).
59 Chichibu, S., Marchand, H., Keller, S., Fini, P., Ibbetson, J., Minsky, M., Fleischer, S., Speck, J., Bowers, J., Hu, E., Mishra, U., DenBaars, S., Deguchi, T., Sota, T., and Nakamura, S., Proc. 2nd Int. Symp. on Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1998), pp. 604; Appl. Phys. Lett. 74,(1999) (unpublished).
60 Keller, S., Chichibu, S., Minsky, M., Hu, E., Mishra, U., and DenBaars, S., J. Crystal Growth (1998) (unpublished).
61 Mcluskey, M., Van de Walle, C., Master, C., Romano, L., and Johnson, N., Appl. Phys. Lett. 72, 2725 (1998).
62 Domen, K., Kuramata, A., and Tanahashi, T., Appl. Phys. Lett. 72, 1359 (1998).

Related content

Powered by UNSILO

Spectroscopic Studies in InGaN Quantum Wells

  • S. F. Chichibu (a1) (a2), T. Sota (a3), K. Wada (a4), S. P. DenBaars (a1) and S. Nakamura (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.