Skip to main content Accessibility help
×
Home

Comparison of the Optical Properties of Er3+ Doped Gallium Nitride Prepared by Metalorganic Molecular Beam Epitaxy (Mombe) and Solid Source Molecular Beam Epitaxy (SSMBE)

  • U. Hömmerich (a1) (a2), J. T. Seo (a1), J. D. MacKenzie (a3), C. R. Abernathy (a3), R. Birkhahn (a4), A. J. Steckl (a4) and J. M. Zavada (a5)...

Abstract

We report on the luminescence properties of Er doped GaN grown prepared by metalorganic molecular beam epitaxy (MOMBE) and solid-source molecular beam epitaxy (SSMBE) on Si substrates. Both types of samples emitted characteristic 1.54 µm PL resulting from the intra-4f Er3+ transition 4I13/24I15/2. Under below-gap excitation the samples exhibited very similar 1.54 µm PL intensities. On the contrary, under above-gap excitation GaN: Er (SSMBE) showed ∼80 times more intense 1.54 µm PL than GaN: Er (MOMBE). In addition, GaN: Er (SSMBE) also emitted intense green luminescence at 537 nm and 558 nm, which was not observed from GaN: Er (MOMBE). The average lifetime of the green PL was determined to be 10.8 µs at 15 K and 5.5 µs at room temperature. A preliminary lifetime analysis suggests that the decrease in lifetime is mainly due to the strong thermalization between the 2H11/2 and 4S3/2 excited states. Nonradiative decay processes are expected to only weakly affect the green luminescence.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Comparison of the Optical Properties of Er3+ Doped Gallium Nitride Prepared by Metalorganic Molecular Beam Epitaxy (Mombe) and Solid Source Molecular Beam Epitaxy (SSMBE)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Comparison of the Optical Properties of Er3+ Doped Gallium Nitride Prepared by Metalorganic Molecular Beam Epitaxy (Mombe) and Solid Source Molecular Beam Epitaxy (SSMBE)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Comparison of the Optical Properties of Er3+ Doped Gallium Nitride Prepared by Metalorganic Molecular Beam Epitaxy (Mombe) and Solid Source Molecular Beam Epitaxy (SSMBE)
      Available formats
      ×

Copyright

References

Hide All
[1] Steckl, A. J. and Zavada, J. M., MRS Bulletin, Vol. 24, No. 9, 1999, pp.33-38.
[2] Torvik, J. T., Feuerstein, J., Pankove, J. I., Qui, C. H., Namavar, F., Appl. Phys. Lett. 69, 2098 1996.
[3] Steckl, A. J. and Birkhahn, R., Appl. Phys. Lett. 73, 1700 (1998).
[4] Steckl, A. J., Garter, M., Birkhahn, R., Scofield, J., Appl. Phys. Lett. 73, 2450, (1998).
[5] Chao, L. C. and Steckl, A. J., Appl. Phys. Lett. 74, 2364, (1999).
[6] Heikenfeld, J., Garter, M., Lee, D. S., Birkenhahn, R., and Steckl, A. J., App. Phys. Lett. 75, 1189, (1999).
[7] Hara, K., Ohtake, N., ICNS 3 Conf. Montpellier, France 5-9 July, 1999, paper P057.
[8] MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Hömmerich, U., Seo, J. T., Wilson, R. G., and Zavada, J. M., Appl. Phys. Lett. 72, 2710 (1998).
[9] Hömmerich, U., Seo, J. T., Thaik, Myo, Abernathy, C. R., MacKenzie, J. D., Zavada, J.M., Journal of Alloys and Compounds, in press.
[10] Favennec, P.N., Haridon, H. L., Salvi, M., Moutonnet, D., and Le Guillou, Y., Electr. Lett. 25, 718 (1989).
[11] Kim, S., Rhee, S. J., Turnbull, D. A., Reuter, E. E., Li, X., Coleman, J. J., and , S. G. Bishop, , Appl. Phys. Lett. 71, 231 (1997).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed