Skip to main content Accessibility help
×
Home

Visualizing elements of order $7$ in the Tate–Shafarevich group of an elliptic curve

  • Tom Fisher (a1)

Abstract

We study the elliptic curves in Cremona’s tables that are predicted by the Birch–Swinnerton-Dyer conjecture to have elements of order $7$ in their Tate–Shafarevich group. We show that in many cases these elements are visible in an abelian surface or abelian 3-fold.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Visualizing elements of order $7$ in the Tate–Shafarevich group of an elliptic curve
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Visualizing elements of order $7$ in the Tate–Shafarevich group of an elliptic curve
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Visualizing elements of order $7$ in the Tate–Shafarevich group of an elliptic curve
      Available formats
      ×

Copyright

References

Hide All
1. Adler, A. and Ramanan, S., Moduli of abelian varieties , Lecture Notes in Mathematics 1644 (Springer, Berlin, 1996).
2. Agashé, A. and Stein, W. A., ‘Visibility of Shafarevich–Tate groups of abelian varieties’, J. Number Theory 97 (2002) no. 1, 171185.
3. Agashé, A. and Stein, W. A., ‘Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, with an appendix by J. E. Cremona and B. Mazur’, Math. Comp. 74 (2005) no. 249, 455484.
4. An, S. Y., Kim, S. Y., Marshall, D. C., Marshall, S. H., McCallum, W. G. and Perlis, A. R., ‘Jacobians of genus one curves’, J. Number Theory 90 (2001) no. 2, 304315.
5. Bending, P. R., ‘Curves of genus $2$ with $\sqrt{2}$ multiplication’, Preprint, 1999, arXiv:9911273.
6. Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron models , Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 21 (Springer, Berlin, 1990).
7. Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system I: The user language’, J. Symbolic Comput. 24 (1997) 235265, see also http://magma.maths.usyd.edu.au/magma/.
8. Cassels, J. W. S. and Flynn, E. V., Prolegomena to a middlebrow arithmetic of curves of genus 2 , LMS Lecture Note Series 230 (Cambridge University Press, Cambridge, 1996).
9. Cremona, J. E., Algorithms for modular elliptic curves (Cambridge University Press, Cambridge, 1997) See also http://www.warwick.ac.uk/∼masgaj/ftp/data/.
10. Cremona, J. E. and Mazur, B., ‘Visualizing elements in the Shafarevich–Tate group’, Exp. Math. 9 (2000) no. 1, 1328.
11. Fisher, T. A., ‘Finding rational points on elliptic curves using 6-descent and 12-descent’, J. Algebra 320 (2008) no. 2, 853884.
12. Fisher, T. A., ‘On families of 7 and 11-congruent elliptic curves’, LMS J. Comput. Math. 17 (2014) no. 1, 536564.
13. Fisher, T. A., ‘Invisibility of Tate–Shafarevich groups in abelian surfaces’, Int. Math. Res. Not. IMRN 2014 no. 15, 40854099.
14. Flynn, E. V., Leprévost, F., Schaefer, E. F., Stein, W. A., Stoll, M. and Wetherell, J. L., ‘Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves’, Math. Comp. 70 (2001) no. 236, 16751697.
15. González-Jiménez, E., González, J. and Guàrdia, J., ‘Computations on modular Jacobian surfaces’, Algorithmic number theory (Sydney, 2002) , Lecture Notes in Computational Science 2369 (Springer, Berlin, 2002) 189197.
16. Grigorov, G., Jorza, A., Patrikis, S., Stein, W. A. and Tarnita, C., ‘Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves’, Math. Comp. 78 (2009) no. 268, 23972425.
17. Halberstadt, E. and Kraus, A., ‘Sur la courbe modulaire X E (7)’, Exp. Math. 12 (2003) no. 1, 2740.
18. Kraus, A. and Oesterlé, J., ‘Sur une question de B. Mazur’, Math. Ann. 293 (1992) no. 2, 259275.
19. Mazur, B., ‘Visualizing elements of order three in the Shafarevich–Tate group’, Asian J. Math. 3 (1999) no. 1, 221232.
20. Merriman, J. R. and Smart, N. P., ‘Curves of genus 2 with good reduction away from 2 with a rational Weierstrass point’, Math. Proc. Cambridge Philos. Soc. 114 (1993) no. 2, 203214.
21. PARI/GP, Version 2.5.5, Bordeaux, 2013, http://pari.math.u-bordeaux.fr/.
22. Poonen, B., Schaefer, E. F. and Stoll, M., ‘Twists of X (7) and primitive solutions to x 2 + y 3 = z 7 ’, Duke Math. J. 137 (2007) no. 1, 103158.
23. Schaefer, E. F., ‘Class groups and Selmer groups’, J. Number Theory 56 (1996) no. 1, 79114.
24. Serre, J.-P., ‘Propriétés galoisiennes des points d’ordre fini des courbes elliptiques’, Invent. Math. 15 (1972) no. 4, 259331.
25. Shimura, G., ‘On the factors of the Jacobian variety of a modular function field’, J. Math. Soc. Japan 25 (1973) 523544.
26. Siksek, S., ‘Infinite descent on elliptic curves’, Rocky Mountain J. Math. 25 (1995) no. 4, 15011538.
27. Silverman, J. H., ‘The Néron fiber of abelian varieties with potential good reduction’, Math. Ann. 264 (1983) no. 1, 13.
28. Silverman, J. H., The arithmetic of elliptic curves , Graduate Text in Mathematics 106 (Springer, New York, 1986).
29. Stein, W. A. et al. , ‘Sage Mathematics Software (Version 6.2)’, The Sage Development Team, 2014, http://www.sagemath.org.
30. Stoll, M., ‘Two simple 2-dimensional abelian varieties defined over ℚ with Mordell–Weil group of rank at least 19’, C. R. Math. Acad. Sci. Paris 321 (1995) no. I, 13411345.
31. Vélu, J., ‘Isogénies entre courbes elliptiques’, C. R. Math. Acad. Sci. Paris Sér. A-B 273 (1971) A238A241.
32. van Wamelen, P. B., ‘Computing with the analytic Jacobian of a genus 2 curve’, Discovering mathematics with Magma , Algorithms and Computation in Mathematics 19 (eds Bosma, W. and Cannon, J.; Springer, Berlin, 2006) 117135.
33. Wang, X. D., ‘2-dimensional simple factors of J 0(N)’, Manuscripta Math. 87 (1995) no. 2, 179197.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed