Skip to main content Accessibility help
×
×
Home

Václav Šimerka: quadratic forms and factorization

  • F. Lemmermeyer (a1)
Abstract

In this article we show that the Czech mathematician Václav Šimerka discovered the factorization of $\frac{1}{9} (1{0}^{17} - 1)$ using a method based on the class group of binary quadratic forms more than 120 years before Shanks and Schnorr developed similar algorithms. Šimerka also gave the first examples of what later became known as Carmichael numbers.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Václav Šimerka: quadratic forms and factorization
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Václav Šimerka: quadratic forms and factorization
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Václav Šimerka: quadratic forms and factorization
      Available formats
      ×
Copyright
References
Hide All
1. Arndt, F., ‘Ueber die Anzahl der Genera der quadratischen Formen’, J. Reine Angew. Math. 56 (1859) 7278.
2. Bach, E., ‘Explicit bounds for primality testing and related problems’, Math. Comp. 55 (1990) 355380.
3. Bhargava, M., ‘Higher composition laws. I: a new view on Gauss composition, and quadratic generalizations’, Ann. of Math. (2) 159 (2004) 217250.
4. Carmichael, R. D., ‘On composite numbers $P$ which satisfy the Fermat congruence ${a}^{P- 1} \equiv 1~\mathrm{mod} ~P$ ’, Amer. Math. Monthly 19 (1912) 2227.
5. Čupr, K., ‘Málo známé jubileum’, Časopis pro pěstování matematiky a fysiky 43 (1914) 482489.
6. Dickson, L., History of the theory of numbers, vol. I (1919) ; vol. II (1920); vol. III (1923) (Carnegie Institute of Washington); reprint (Chelsea, 1971).
7. Dirichlet, P. G. L., ‘Recherches sur diverses applications de l’analyse infinitésimale à la théorie des nombres’, J. Reine Angew. Math. 21 (1839) 112.
8. Ettingshausen, A. v., Die combinatorische Analysis als Vorbereitungslehre zum Studium der theoretischen höhern Mathematik (Vienna, 1825).
9. Flath, D., Introduction to number theory (Wiley & Sons, New York, 1989).
10. Hambleton, S. and Lemmermeyer, F., ‘Arithmetic of Pell surfaces’, Acta Arith. 146 (2011) 112.
11. Hofmann, J. E., ‘Neues über Fermats zahlentheoretische Herausforderungen von 1657’, Abh. Preuss. Akad. Wiss. 9 (1943) 52.
12. Joubert, P., ‘Sur la théorie des fonctions elliptiques et son application à la théorie des nombres’, C.R. Acad. Sci. Paris 50 (1860) 774779.
13. Kopáčkova, A., Počátky diferenciálního a integrálního počtu ve školské matematice, Proceedings of 10. setkání učitelú matematiky všech typú a stupnú škol (2006), 169–174.
14. Korselt, A., ‘Problème Chinois’, L’interméd. Math. 6 (1899) 142143.
15. Lipschitz, R., ‘Einige Sätze aus der Theorie der quadratischen Formen’, J. Reine Angew. Math. 53 (1857) 238259.
16. Pánek, A., ‘Život a pusobení p. Václava Šimerky’, Časopis pro pěstování matematiky a fysiky 17 (1888) 253256.
17. Scheffler, H., Die unbestimmte Analytik (Hannover, 1854).
18. Schnorr, C. P., ‘Refined analysis and improvements on some factoring algorithms’, J. Algorithms 3 (1982) 101127.
19. Schoof, R., ‘Quadratic fields and factorisation’, Computational methods in number theory (eds Tijdeman, R. and Lenstra, H.; Mathematisch Centrum, Amsterdam, 1982) 235286, Tract 154.
20. Seysen, M., ‘A probabilistic factorization algorithm with quadratic forms of negative discriminant’, Math. Comp. 48 (1987) 757780.
21. Shanks, D., Class number, a theory of factorization and genera, Proceedings of Symposia in Pure Mathematics 20 (American Mathematical Society, 1971).
22. Šimerka, W., ‘Die Perioden der quadratischen Zahlformen bei negativen Determinanten’, Sitzungsber. Kaiserl. Akad. Wiss., Math.-Nat.wiss. Classe 31 (1858) 3367, presented May 14, 1858.
23. Šimerka, W., ‘Die trinären Zahlformen und Zahlwerthe’, Sitzungsber. Kaiserl. Akad. Wiss., Math.-Nat.wiss. Classe 38 (1859) 390481.
24. Šimerka, W., ‘Lösung zweier Arten von Gleichungen’, Sitz.ber. Wien 33 (1859) 277284.
25. Šimerka, W., Arch. Math. Phys. 51 (1866) 503504.
26. Šimerka, V., ‘Poznámka (Number theoretic note)’, Casopis 8 (1879) 187188.
27. Šimerka, V., ‘Zbytky z arithmetické posloupnosti (On the remainders of an arithmetic progression)’, Casopis 14 (1885) 221225.
28. Sloane, N., ‘Online Encyclopedia of Integer Sequences’, A002997, http://oeis.org/A002997.
29. Wallis, J., Commercium epistolicum de quaestionibus mathematicis (Oxonium, 1658);http://reader.digitale-sammlungen.de/resolve/display/bsb10525798.html.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

LMS Journal of Computation and Mathematics
  • ISSN: -
  • EISSN: 1461-1570
  • URL: /core/journals/lms-journal-of-computation-and-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed