Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-11T22:23:34.686Z Has data issue: false hasContentIssue false

Points of low height on elliptic surfaces with torsion

Published online by Cambridge University Press:  27 August 2010

Sonal Jain*
Affiliation:
Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA (email: jain@courant.nyu.edu)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We determine the smallest possible canonical height for a non-torsion point P of an elliptic curve E over a function field ℂ(t) of discriminant degree 12n with a 2-torsion point for n=1,2,3, and with a 3-torsion point for n=1,2. For each m=2,3, we parametrize the set of triples (E,P,T) of an elliptic curve E/ℚ with a rational point P and m-torsion point T that satisfy certain integrality conditions by an open subset of ℙ2. We recover explicit equations for all elliptic surfaces (E,P,T) attaining each minimum by locating them as curves in our projective models. We also prove that for n=1,2 , these heights are minimal for elliptic curves over a function field of any genus. In each case, the optimal (E,P,T) are characterized by their patterns of integral points.

MSC classification

Type
Research Article
Copyright
Copyright © London Mathematical Society 2010

References

[1] Cox, D. A. and Zucker, S., ‘Intersection numbers of sections of elliptic surfaces’, Invent. Math. 53 (1979) no. 1, 144MR 538682(81i:14023.Google Scholar
[2] Elkies, N. D., ‘Points of low canonical height on elliptic curves and surfaces’, 2001,http://math.harvard.edu/∼elkies/loht.pdf.Google Scholar
[3] Elkies, N. D., ‘Points of low height on elliptic curves and surfaces. I. Elliptic surfaces over ℙ1 with small d’, Algorithmic number theory, Lecture Notes in Computer Science 4076 (Springer, Berlin, 2006) 287301;MR 2282931(2008e:11082).Google Scholar
[4] Elkies, N. D., ‘Points on elliptic curves with several integral multiples: algebra, geometry and some applications’, 2006, http://math.harvard.edu/∼elkies/ants7_loht.pdf.Google Scholar
[5] Hindry, M. and Silverman, J. H., ‘The canonical height and integral points on elliptic curves’, Invent. Math. 93 (1988) no. 2, 419450MR 948108(89k:11044).CrossRefGoogle Scholar
[6] Jain, S., ‘The minimum canonical height on an elliptic curve over ℂ(t)’,http://cims.nyu.edu/∼jain/record.pdf.Google Scholar
[7] Jain, S., ‘Minimal regulators for rank-2 subgroups of rational and K3 elliptic surfaces’, Experiment. Math. 18 (2009) no. 4, 429447MR 2583543.Google Scholar
[8] Kodaira, K., ‘On compact analytic surfaces. II, III’, Ann. of Math. (2) 77 (1963) 563626; K. Kodaira, ‘On compact analytic surfaces. II, III’, Ann. of Math. (2) 78 (1963), 1–40; MR 0184257(32#1730).Google Scholar
[9] Lang, S., Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 231 (Springer, Berlin, 1978) ; MR 518817(81b:10009).CrossRefGoogle Scholar
[10] Néron, A., ‘Modèles minimaux des variétés abéliennes sur les corps locaux et globaux’, Publ. Math. Inst. Hautes Études Sci. 21 (1964) 128MR 0179172(31#3423).CrossRefGoogle Scholar
[11] Nishiyama, K.-i., ‘The minimal height of Jacobian fibrations on K3 surfaces’, Tohoku Math. J. (2) 48 (1996) no. 4, 501517MR 1419081(97k:14037).CrossRefGoogle Scholar
[12] Oguiso, K. and Shioda, T., ‘The Mordell–Weil lattice of a rational elliptic surface’, Comment. Math. Univ. St. Pauli. 40 (1991) no. 1, 8399MR 1104782(92g:14036).Google Scholar
[13] Silverman, J. H., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151 (Springer, New York, 1994) ; MR 1312368(96b:11074).Google Scholar
[14] Tate, J. T., ‘The arithmetic of elliptic curves’, Invent. Math. 23 (1974) 179206MR 0419359(54#7380).Google Scholar