[1]Arbarello, E., Cornalba, M., Griffiths, P. A. and Harris, J., Geometry of algebraic curves, vol. 1, Grundlehren der Mathematischen Wissenschaften 267 (Springer, Berlin, 1984).
[2]Avanzi, R. M., ‘A study on polynomials in separated variables with low genus factors’, PhD Thesis, Universität Essen, 2001.
[3]Birkenhake, Ch. and Lange, H., Complex abelian varieties, 2nd edn, Grundlehren der Mathematischen Wissenschaften 302 (Springer, Berlin, 2004).
[4]Bosma, W. and Cannon, J. J., Handbook of magma functions (School of Mathematics and Statistics, University of Sydney, 1995).
[5]Bosma, W., Cannon, J. J. and Playoust, C., ‘The Magma algebra system. I. The user language’, J. Symbolic Comput. 24 (1997) no. 3–4, 235–265.
[6]Bost, J.-B. and Mestre, J.-F., ‘Moyenne arithmético–géometrique et périodes des courbes de genre 1 et 2’, Gaz. Math. 38 (1988) 36–64.
[7]Brumer, A., ‘The rank of J _{0}(N)’, Astérisque 228 (1995) 41–68.
[8]Bruns, W. and Gubeladze, J., ‘Polytopal linear groups’, J. Algebra 218 (1999) 715–737.
[9]Cassels, J. W. S., ‘Factorization of polynomials in several variables’, Proceedings of the 15th scandinavian congress, Oslo 1968, Lecture Notes in Mathematics 118 (Springer, New York, 1970) 1–17.
[10]Cassou-Noguès, P. and Couveignes, J.-M., ‘Factorisations explicities de g(y)−h(z)’, Acta Arith. 87 (1999) no. 4, 291–317.
[11]Castryck, W. and Voight, J., ‘On nondegeneracy of curves’, Algebra Number Theory 3 (2009) no. 3, 255–281.
[12]Chai, C.-L. and Oort, F., ‘A note on the existence of absolutely simple Jacobians’, J. Pure Appl. Algebra 155 (2001) no. 2–3, 115–120.
[13]Davenport, H., Lewis, D. J. and Schinzel, A., ‘Equations of the form f(x)=g(y)’, Q. J. Math. Oxford 12 (1961) 304–312.
[14]Davenport, H. and Schinzel, A., ‘Two problems concerning polynomials’, J. reine angew. Math. 214 (1964) 386–391.
[15]Donagi, R. and Livné, R., ‘The arithmetic–geometric mean and isogenies for curves of higher genus’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 28 (1999) no. 2, 323–339.
[16]Feit, W., ‘Automorphisms of symmetric balanced incomplete block designs’, Math. Z. 118 (1970) 40–49.
[17]Feit, W., ‘On symmetric balanced incomplete block designs with doubly transitive automorphism groups’, J. Combin. Theory Ser. A 14 (1973) 221–247.
[18]Feit, W., Some consequences of the classification of finite simple groups, Proceedings of Symposia in Pure Mathematics 37 (American Mathematical Society, Providence, RI, 1980) 175–181.
[20]Fried, M., ‘On a conjecture of Schur’, Michigan Math. J. 17 (1970) 41–55.
[21]Fried, M., ‘The field of definition of function fields and a problem in the reducibility of polynomials in two variables’, Illinois J. Math. 17 (1973) 128–146.
[22]Fried, M., Exposition on an arithmetic–group theoretic connection via Riemann’s existence theorem, Proceedings of Symposia in Pure Mathematics 37 (American Mathematical Society, Providence, RI, 1980) 571–602.
[23]Fulton, W., Intersection theory, 2nd edn (Springer, Berlin, 1998).
[24]Gaudry, P. and Gürel, N., ‘An extension of Kedlaya’s point-counting algorithm to superelliptic curves’, Advances in cryptology: ASIACRYPT 2001, Lecture Notes in Computer Science 2248 (ed. Boyd, C.; Springer, Berlin, 2001) 480–494.
[25]Gorenstein, D., Lyons, R. and Solomon, R., The classification of the finite simple groups, Mathematical Surveys and Monographs 40.1 (American Mathematical Society, Providence, RI, 1994).
[26]Harrison, M. C., ‘Some notes on Kedlaya’s algorithm for hyperelliptic curves’, Preprint, 2010, arXiv math.NT/1006.4206 v1.
[27]Hashimoto, K.-I., ‘On Brumer’s family of RM-curves of genus two’, Tohoku Math. J. (2) 52 (2000) no. 4, 475–488.
[28]Howe, E. W. and Zhu, H. J., ‘On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field’, J. Number Theory 92 (2002) 139–163.
[29]Kedlaya, K. S., ‘Counting points on hyperelliptic curves using Monsky–Washnitzer cohomology’, J. Ramanujan Math. Soc. 16 (2001) no. 4, 323–338.
[30]Koelman, R. J., ‘The number of moduli of families of curves on toric surfaces’, PhD Thesis, Catholic University, Nijmegen, 1991.
[31]Kux, G., ‘Construction of algebraic correspondences between hyperelliptic function fields using Deuring’s theory’, PhD Thesis, Universität Kaiserslautern, 2004.
[32]Lidl, R., Mullen, G. L. and Turnwald, G., Dickson polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics 65 (Longman Scientific and Technical, Harlow; copublished in the United States, Wiley, New York, 1993).
[33]Mestre, J.-F., ‘Couples de jacobiennes isogénes de courbes hyperelliptiques de genre arbitraire’, Preprint, 2009, arXiv:math.AG/0902.3470 v1.
[34]Mestre, J.-F., ‘Familles de courbes hyperelliptiques à multiplications réelles’, Arithmetic algebraic geometry (Texel, 1989), Progress in Mathematics 89 (Birkhäuser, Boston, MA, 1991).
[35]Oort, F. and Ueno, K., ‘Principally polarized abelian varieties of dimension two or three are Jacobian varieties’, J. Fac. Sci. Univ. Tokyo Sect. IA: Math. 20 (1973) 377–381.
[36]Poonen, B. and Schaefer, E. F., ‘Explicit descent for Jacobians of cyclic covers of the projective line’, J. reine angew. Math. 488 (1997) 141–188.
[38]Schaefer, E. F., ‘Computing a Selmer group of a Jacobian using functions on the curve’, Math. Ann. 310 (1998) 447–471.
[39]Shimura, G., Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series 46 (Princeton University Press, Princeton, NJ, 1998).
[40]Smith, B., ‘Isogenies and the discrete logarithm problem in Jacobians of genus 3 hyperelliptic curves’, EUROCRYPT 2008, Lecture Notes in Computer Science 4965 (ed. Smart, N.; Springer, Berlin, 2008) 163–180.
[41]Smith, B., ‘Families of explicit isogenies of hyperelliptic Jacobians’, Arithmetic, geometry, cryptography and coding theory 2009, Contemporary Mathematics 521 (eds Kohel, D. and Rolland, R.; American Mathematical Society, Providence, RI, 2010) 121–144.
[42]Tautz, W., Top, J. and Verberkmoes, A., ‘Explicit hyperelliptic curves with real multiplication and permutation polynomials’, Canad. J. Math. 43 (1991) no. 5, 1055–1064.
[43]Vélu, J., ‘Isogénies entre courbes elliptiques’, C. R. Acad. Sci. Paris 273 (1971) 238–241.
[44]Zarhin, Yu. G., ‘Hyperelliptic Jacobians without complex multiplication, doubly transitive permutation groups and projective representations’, Algebraic number theory and algebraic geometry, Contemporary Mathematics 300 (eds Vostokov, S. and Zarhin, Y.; American Mathematical Society, Providence, RI, 2002) 195–210.
[45]Zarhin, Yu. G., ‘The endomorphism rings of Jacobians of cyclic covers of the projective line’, Math. Proc. Cambridge Philos. Soc. 136 (2004) no. 2, 257–267.
[46]Zarhin, Yu. G., ‘Superelliptic Jacobians’, Diophantine geometry, CRM Series 4 (Edizioni Della Normale, Pisa, 2007) 363–390.
[47]Zarhin, Yu. G., ‘Endomorphisms of superelliptic Jacobians’, Math. Z. 261 (2009) 691–707, 709.