Skip to main content Accessibility help
×
×
Home

Equivalences in Euler-based diagram systems through normal forms

  • Andrew Fish (a1) and John Taylor (a2)

Abstract

The form of information presented can influence its utility for the conveying of knowledge by affecting an interpreter’s ability to reason with the information. There are distinct types of representational systems (for example, symbolic versus diagrammatic logics), various sub-systems (for example, propositional versus predicate logics), and even within a single representational system there may be different means of expressing the same piece of information content. Thus, to display information, choices must be made between its different representations, depending upon many factors such as: the context, the reasoning tasks to be considered, user preferences or desires (for example, for short symbolic sentences or minimal clutter within diagrammatic systems). The identification of all equivalent representations with the same information content is a sensible precursor to attempts to minimise a metric over this class. We posit that defining notions of semantic redundancy and identifying the syntactic properties that encapsulate redundancy can help in achieving the goal of completely identifying equivalences within a single notational system or across multiple systems, but that care must be taken when extending systems, since refinements of redundancy conditions may be necessary even for conservative system extensions. We demonstrate this theory within two diagrammatic systems, which are Euler-diagram-based notations. Such notations can be used to represent logical information and have applications including visualisation of database queries, social network visualisation, statistical data visualisation, and as the basis of more expressive diagrammatic logics such as constraint languages used in software specification and reasoning. The development of the new associated machinery and concepts required is important in its own right since it increases the growing body of knowledge on diagrammatic logics. In particular, we consider Euler diagrams with shading, and then we conservatively extend the system to include projections, which allow for a much greater degree of flexibility of representation. We give syntactic properties that encapsulate semantic equivalence in both systems, whilst observing that the same semantic concept of redundancy is significantly more difficult to realise as syntactic properties in the extended system with projections.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Equivalences in Euler-based diagram systems through normal forms
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Equivalences in Euler-based diagram systems through normal forms
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Equivalences in Euler-based diagram systems through normal forms
      Available formats
      ×

Copyright

References

Hide All
1. Knowledge representation: logical, philosophical, and computational foundations (Brooks Cole Publishing Co., Pacific Grove, CA, 2000).
2. Allen, J. F., ‘Maintaining knowledge about temporal intervals’, Commun. ACM 26 (1983) no. 11, 832843.
3. Barwise, J. and Etchemendy, J., Hyperproof (CSLI Press, Stanford, CA, 1994).
4. Barwise, J. and Etchemendy, J., ‘Visual information and valid reasoning’, Logical reasoning with diagrams (eds Allwein, G. and Barwise, J.; Oxford University Press, Oxford, 1996) 325.
5. Barwise, J. and Hammer, E., ‘Diagrams and the concept of logical system’, Logical reasoning with diagrams (eds Allwein, G. and Barwise, J.; Oxford University Press, Oxford, 1996).
6. Bertault, F. and Eades, P., ‘Drawing hypergraphs in the subset standard’, Proceedings of the 8th International Symposium on Graph Drawing , Lecture Notes in Computer Science 1984 (Springer, Berlin, 2000) 164169.
7. Bottoni, P., Fish, A. and Parisi-Presicce, F., ‘Spider graphs: a graph transformation system for spider diagrams’, Softw. Syst. Model. 10.1007/s10270-013-0381-1.
8. Bottoni, P. and Fish, A., ‘Extending spider diagrams for policy definition’, J. Vis. Lang. Comput. 24 (2013) no. 3, 169191.
9. Chapman, P., Stapleton, G. and Delaney, A., ‘On the expressiveness of second-order spider diagrams’, J. Vis. Lang. Comput. 24 (2013) 327349.
10. Chow, S. C., ‘Generating and drawing area-proportional Euler and Venn diagrams’, PhD Thesis, University of Victoria, 2007.
11. Cohn, A. G., Bennett, B., Gooday, J. and Gotts, N. M., ‘Qualitative spatial representation and reasoning with the region connection calculus’, Geoinformatica 1 (1997) no. 3, 275316.
12. Collins, C., Penn, G. and Carpendale, S., ‘Bubble sets: revealing set relations with isocontours over existing visualisations’, IEEE Trans. Vis. Comput. Graphics 15 (2009) no. 6, 10091016.
13. Cordasco, G., De Chiara, R. and Fish, A., ‘Interactive visual classification with Euler diagrams’, Proc. VL/HCC 2009 (IEEE Computer Society Press, Los Alamitos, CA, 2009) 185192.
14. Dau, F. and Fish, A., ‘Conceptual spider diagrams’, Proc. ICCS 2008 , Lecture Notes in Computer Science 5113 (Springer, New York, 2008) 104118.
15. Dau, F. and Eklund, P., ‘A diagrammatic reasoning system for the description logic ALC’, J. Vis. Lang. Comput. 19 (2008) no. 5, 539573.
16. Dau, F. and Fish, A., ‘Conceptual spider diagrams’, 16th International Conference on Conceptual Structures , Lecture Notes in Computer Science 5113 (Springer, New York, 2008) 104118.
17. DeChiara, R., Erra, U. and Scarano, V., ‘VennFS: A Venn diagram file manager’, Proceedings of Information Visualisation (IEEE Computer Society Press, Los Alamitos, CA, 2003) 120126.
18. Delaney, A. and Stapleton, G., ‘Spider diagrams of order’, Proceedings of the VLL 2007 Workshop on Visual Languages and Logic, CEUR-WS.org/Vol-274 (CEUR, Idaho, 2007) 2739.
19. Delaney, A., Stapleton, G., Taylor, J. and Thompson, S., ‘Fragments of spider diagrams of order and their relative expressiveness’, Proceedings of 6th International Conference on the Theory and Application of Diagrams, Portland, OR , Lecture Notes in Artificial Intelligence 6170 (Springer, Berlin, 2010) 6983.
20. Delaney, A., Taylor, J. and Thompson, S., ‘Spider diagrams of order and a hierarchy of star-free regular languages’, Proceedings of 5th International Conference on the Theory and Application of Diagrams, Herrsching, Germany , Lecture Notes in Artificial Intelligence 5223 (Springer, Berlin, 2008) 172187.
21. Eades, P., Lai, W., Misue, K. and Sugiyama, K., ‘Layout adjustment and the mental map’, Vis. Lang. Comput. 6 (1995) 183210.
22. Eigenhofer, M. and Franzosa, R., ‘On the equivalence of topological relations’, Int. J. Geogr. Inf. Syst. 9 (1995) no. 2, 133152.
23. Euler, L., ‘Lettres a une princesse dallemagne sur divers sujets de physique et de philosophie’, Lett. Soc. Typograph. Berne 2 (1775) 102108.
24. Fish, A. and Flower, J., ‘Abstractions of Euler diagrams’, Proceedings of Euler Diagrams 2004, Brighton, UK , Electronic Notes in Theoretical Computer Science 134 (Elsevier, Amsterdam, 2005) 77101.
25. Fish, A., Flower, J. and Howse, J., ‘The semantics of augmented constraint diagrams’, J. Vis. Lang. Comput. 16 (2005) 541573.
26. Fish, A., John, C. and Taylor, J., ‘A normal form for Euler diagrams with shading’, Diagrammatic representation and inference, 5th International Conference, Diagrams 2008, Herrsching, Germany, September 19–21, 2008 , Lecture Notes in Computer Science 5223 (Springer, Berlin, 2008) 206221.
27. Fish, A., Khazaei, B. and Roast, C., ‘User comprehension of Euler diagrams’, J. Vis. Lang. Comput. 22 (2011) no. 5, 340354.
28. Flower, J., Howse, J. and Taylor, J., ‘Nesting in Euler diagrams: syntax, semantics and construction’, Softw. Syst. Modell. 3 (2004) 5567.
29. Flower, J., Fish, A. and Howse, J., ‘Euler diagram generation’, Vis. Lang. Comput. 19 (2008) no. 6, 675694.
30. Gil, J., Howse, J., Kent, S. and Taylor, J., ‘Projections in Venn–Euler diagrams’, Proc. IEEE Symposium on Visual Languages (IEEE Computer Society Press, Los Alamitos, CA, 2000) 119126.
31. Gil, J., Howse, J. and Tulchinsky, E., ‘Positive semantics of projections’, J. Vis. Lang. Comput. 13 (2001) no. 2, 197227.
32. Grunbaum, B., ‘The construction of Venn diagrams’, College Math. J. 15 (1984) no. 3, 238247.
33. Gurr, C., ‘Effective diagrammatic communication: syntactic, semantic and pragmatic issues’, J. Vis. Lang. Comput. 10 (1999) no. 4, 317342.
34. Gurr, C. and Tourlas, K., ‘Towards the principled design of software engineering diagrams’, Proceedings of 22nd International Conference on Software Engineering (ACM Press, New York, 2000) 509518.
35. Hamburger, P. and Pippert, R. E., ‘Simple, reducible Venn diagrams on five curves and Hamiltonian cycles’, Geom. Dedicata 68 (1997) no. 3, 245262.
36. Hammer, E., Logic and visual information (CSLI Publications, 1995).
37. Hammer, E. and Danner, N., ‘Towards a model theory of Venn diagrams’, J. Philos. Logic 25 (1996) no. 4, 463482.
38. Hammer, E. and Shin, S. J., ‘Euler’s visual logic’, Hist. Philos. Logic (1998) 129.
39. Harel, D., ‘On visual formalisms’, Diagrammatic reasoning (eds Glasgow, J., Narayan, N. H. and Chandrasekaran, B.; MIT Press, Cambridge, MA, 1998) 235271.
40. Harel, D. and Kahana, H. A., ‘On statecharts with overlapping’, ACM Trans. Softw. Eng. Method 1 (1992) no. 4, 399421.
41. Hegarty, M., ‘Diagrams in the mind and in the world: relations between internal and external visualizations’, Proceedings of 3rd International Conference on the Theory and Application of Diagrams , Lecture Notes in Artificial Intelligence 2980 (Springer, New York, 2004) 113.
42. Howse, J., Molina, F., Shin, S.-J. and Taylor, J., ‘Type-syntax and token-syntax in diagrammatic systems’, Proceedings of 2nd International Conference on Formal Ontology in Information Systems, Maine, USA (ACM Press, New York, 2001) 174185.
43. Howse, J., Molina, F., Shin, S.-J. and Taylor, J., ‘On diagram tokens and types’, Proceedings of 2nd International Conference on the Theory and Application of Diagrams, Georgia, USA (Springer, New York, 2002) 146160. April.
44. Howse, J., Molina, F., Taylor, J., Kent, S. and Gil, J., ‘Spider diagrams: a diagrammatic reasoning system’, J. Vis. Lang. Comput. 12 (2001) no. 3, 299324.
45. Howse, J. and Schuman, S., ‘Precise visual modelling’, J. Softw. Syst. Model. 4 (2005) 310325.
46. Howse, J., Stapleton, G., Flower, J. and Taylor, J., ‘Corresponding regions in Euler diagrams’, Proceedings of 2nd International Conference on the Theory and Application of Diagrams, Georgia, USA (Springer, New York, 2002) 7690.
47. Howse, J., Stapleton, G. and Taylor, J., ‘Spider diagrams’, LMS J. Comput. Math. 8 (2005) 145194.
48. Howse, J., Stapleton, G., Taylor, K. and Chapman, P., ‘Visualizing ontologies: a case study’, The semantic web ISWC 2011 , Lecture Notes in Computer Science 7031 (Springer, New York, 2011) 257272.
49. Jamnik, M., Mathematical reasoning with diagrams (CSLI Press, Stanford, CA, 2001).
50. Jamnik, M., Bundy, A. and Green, I., ‘Automation of diagrammatic reasoning’, Proceedings of the 15th International Joint Conference on Artificial Intelligence 1 (Morgan Kaufmann Publishers, San Francisco, CA, 1997) 528533.
51. Sowa, J. F., Conceptual structures: information processing in mind and machine (Addison-Wesley, Reading, MA, 1984).
52. John, C., ‘Reasoning with projected contours’, Proceedings of 3rd International Conference on the Theory and Application of Diagrams Lecture Notes in Artificial Intelligence 2980 (Springer, New York, 2004) 147150.
53. John, C., ‘Projected contours in Euler diagrams’, Euler diagrams 2004 , Electronic Notes in Theoretical Computer Science 134 (Elsevier, Amsterdam, 2005) 103126.
54. John, C., ‘Measuring and reducing clutter in spider diagrams with projections’, PhD Thesis, University of Brighton, 2006.
55. John, C., Fish, A., Howse, J. and Taylor, J., ‘Exploring the notion of clutter in Euler diagrams’, Proceedings of 4th International Conference on the Theory and Application of Diagrams , Lecture Notes in Artificial Intelligence 4045 (Springer, New York, 2006) 267282.
56. Johnson, D. S. and Pollak, H. O., ‘Hypergraph planarity and the complexity of drawing Venn diagrams’, J. Graph Theory 11 (1987) no. 3, 309325.
57. Karnaugh, M., ‘The map method for synthesis of combinational logic circuits’, Trans. Amer. Inst. Electr. Eng. 72 (1953) no. 5, 593599.
58. Kent, S., ‘Constraint diagrams: Visualizing invariants in object oriented modelling’, Proceedings of OOPSLA97 (ACM Press, New York, 1997) 327341.
59. Kestler, H., Muller, A., Gress, T. and Buchholz, M., ‘Generalized Venn diagrams: a new method for visualizing complex genetic set relations’, J. Bioinformatics 21 (2005) no. 8, 15921595.
60. Kestler, H. A., Müller, A., Kraus, J. M., Buchholz, M., Gress, T. M., Liu, H., Kane, D. W., Zeeberg, B. R. and Weinstein, J., ‘Vennmaster: Area-proportional Euler diagrams for functional GO analysis of microarrays’, BMC Bioinformatics 9 (2008) 67.
61. Larkin, J. and Simon, H., ‘Why a diagram is (sometimes) worth ten thousand words’, J. Cognitive Sci. 11 (1987) 6599.
62. Papadimitriou, C., Grigni, M. and Papadias, D., ‘Topological inference’, 14th Conference on Artificial Intelligence (Morgan Kaufmann, San Francisco, CA, 1995) 901906.
63. Mamakani, K., Myrvold, W. and Ruskey, F., ‘Generating simple convex Venn diagrams’, J. Discrete Algorithms 16 (2012) 270286.
64. More, T., ‘On the construction of Venn diagrams’, J. Symbolic Logic 23 (1959) 303304.
65. Riche, N. H. and Dwyer, T., ‘Untangling Euler diagrams’, IEEE Trans. Vis. Comput. Graphics 16 (2010) no. 6, 10901099.
66. Ruskey, F. and Weston, M., ‘A survey of Venn diagrams’, Electron. J. Combin. (1997) updated 2001, 2005. www.combinatorics.org/Surveys/ds5/VennEJC.html.
67. Shimojima, A., ‘Inferential and expressive capacities of graphical representations: survey and some generalizations’, Diagrammatic Representation and Inference: Proceedings of Diagrams 2004 , Lecture Notes in Computer Science 2980 (Springer, New York, 2004) 1821.
68. Shin, S.-J., The logical status of diagrams (Cambridge University Press, Cambridge, 1994).
69. Simonetto, P., Auber, D. and Archambault, D., ‘Fully automatic visualisation of overlapping sets’, Comput. Graph. Forum 28 (2009) 967974.
70. Stapleton, G. and Delaney, A., ‘Evaluating and generalizing constraint diagrams’, J. Vis. Lang. Comput. 19 (2008) 499521.
71. Stapleton, G., Howse, J., Chapman, P., Delaney, A., Burton, J. and Oliver, I., ‘Formalizing concept diagrams’, 19th International Conference on Distributed Multimedia Systems, Visual Languages and Computing (Knowledge Systems Institute, Skokie, IL, 2013) 182187.
72. Stapleton, G., Howse, J. and Rodgers, P., ‘A graph theoretic approach to general Euler diagram drawing’, Theoret. Comput. Sci. 411 (2010) no. 1, 91112.
73. Stapleton, G. and Masthoff, J., ‘Incorporating negation into visual logics: a case study using Euler diagrams’, Visual Languages and Computing 2007 (Knowledge Systems Institute, Skokie, IL, 2007) 187194.
74. Stapleton, G., Masthoff, J., Flower, J., Fish, A. and Southern, J., ‘Automated theorem proving in Euler diagrams systems’, J. Automat. Reason. 39 (2007) 431470.
75. Stapleton, G., Thompson, S., Howse, J. and Taylor, J., ‘The expressiveness of spider diagrams’, J. Logic Comput. 14 (2004) no. 6, 857880.
76. Swoboda, N. and Allwein, G., ‘Using DAG transformations to verify Euler/Venn homogeneous and Euler/Venn FOL heterogeneous rules of inference’, J. Softw. Syst. Model. 3 (2004) no. 2, 136149.
77. Thièvre, J., Viaud, M. and Verroust-Blondet, A., ‘Using Euler diagrams in traditional library environments’, Euler Diagrams 2004 , Electronic Notes on Theoretical Computer Science 134 (Elsevier, Amsterdam, 2005) 189202.
78. Venn, J., ‘On the diagrammatic and mechanical representation of propositions and reasonings’, Philos. Mag. Ser. 5 10 (1880) 118.
79. Wilkinson, L., ‘Exact and approximate area-proportional circular Venn and Euler diagrams’, IEEE Trans. Vis. Comput. Graphics 18 (2012) no. 2, 321331.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

LMS Journal of Computation and Mathematics
  • ISSN: -
  • EISSN: 1461-1570
  • URL: /core/journals/lms-journal-of-computation-and-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed