Skip to main content Accessibility help
×
×
Home

Deterministic polynomial factoring and association schemes

  • Manuel Arora (a1), Gábor Ivanyos (a2), Marek Karpinski (a3) and Nitin Saxena (a4)
Abstract

The problem of finding a nontrivial factor of a polynomial $f(x)$ over a finite field ${\mathbb{F}}_q$ has many known efficient, but randomized, algorithms. The deterministic complexity of this problem is a famous open question even assuming the generalized Riemann hypothesis (GRH). In this work we improve the state of the art by focusing on prime degree polynomials; let $n$ be the degree. If $(n-1)$ has a ‘large’ $r$ -smooth divisor $s$ , then we find a nontrivial factor of $f(x)$ in deterministic $\mbox{poly}(n^r,\log q)$ time, assuming GRH and that $s=\Omega (\sqrt{n/2^r})$ . Thus, for $r=O(1)$ our algorithm is polynomial time. Further, for $r=\Omega (\log \log n)$ there are infinitely many prime degrees $n$ for which our algorithm is applicable and better than the best known, assuming GRH. Our methods build on the algebraic-combinatorial framework of $m$ -schemes initiated by Ivanyos, Karpinski and Saxena (ISSAC 2009). We show that the $m$ -scheme on $n$ points, implicitly appearing in our factoring algorithm, has an exceptional structure, leading us to the improved time complexity. Our structure theorem proves the existence of small intersection numbers in any association scheme that has many relations, and roughly equal valencies and indistinguishing numbers.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Deterministic polynomial factoring and association schemes
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Deterministic polynomial factoring and association schemes
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Deterministic polynomial factoring and association schemes
      Available formats
      ×
Copyright
References
Hide All
1. Adleman, L., Manders, K. and Miller, G., ‘On taking roots in finite fields’, Proceedings of the 18th FOCS (1977) 175178.
2. Ankeny, N. C., ‘The least quadratic non residue’, Ann. of Math. (2) 55 (1952) 6572.
3. Bach, E. and Sorenson, J., ‘Explicit bounds for primes in residue classes’, Math. Comput. 65 (1996) 17171735.
4. Bach, E., von zur Gathen, J. and Lenstra, H. W. Jr, ‘Factoring polynomials over special finite fields’, Finite Fields Appl. 7 (2001) 528.
5. Bannai, E. and Ito, T., Algebraic combinatorics I: association schemes (Benjamin-Cummings, 1984).
6. Berlekamp, E. R., ‘Factoring polynomials over finite fields’, Bell Syst. Tech. J. 46 (1967) 18531859.
7. Berlekamp, E. R., ‘Factoring polynomials over large finite fields’, Math. Comp. 24 (1970) 713735.
8. Borwein, P., Choi, S., Rooney, B. and Weirathmueller, A. (eds), The Riemann hypothesis: a resource for the afficionado and virtuoso alike , CMS Books in Mathematics (Springer, 2008).
9. Bose, R. C. and Mesner, D. M., ‘On linear associative algebras corresponding to association schemes of partially balanced designs’, Ann. Math. Statist. 30 (1959) 2138.
10. Bose, R. C. and Nair, K. R., ‘Partially balanced incomplete block designs’, Sankhyā 4 (1939) 337372.
11. Camion, P., ‘A deterministic algorithm for factorizing polynomials of $\mathbb{F}_q[x]$ ’, Ann. Discrete Math. 17 (1983) 149157.
12. Cantor, D. G. and Zassenhaus, H., ‘A new algorithm for factoring polynomials over finite fields’, Math. Comput. 36 (1981) 587592.
13. Cheng, Q. and Huang, M. A., ‘Factoring polynomials over finite fields and stable colorings of tournaments’, Proceedings of the 4th ANTS (2000) 233246.
14. Chowla, S., The Riemann hypothesis and Hilbert’s tenth problem (Gordon and Breach, 1965).
15. Cohn, H. and Umans, C., ‘Fast matrix multiplication using coherent configurations’, Preprint, 2012,arXiv:1207.6528.
16. Delsarte, P., ‘An algebraic approach to the association schemes of coding theory’, Technical Report, Philips Research Reports, Supplement No. 10, 1973.
17. Evdokimov, S. A., ‘Factorization of a solvable polynomial over finite fields and the generalized Riemann hypothesis’, Zap. Nauchn. Sem. LOMI 176 (1989) 104117.
18. Evdokimov, S. A., ‘Factorization of polynomials over finite fields in subexponential time under GRH’, Proc. 1st ANTS , Lecture Notes in Computer Science 877 (Springer, 1994) 209219.
19. Evdokimov, S. A. and Ponomarenko, I. N., ‘Separability number and Schurity number of coherent configurations’, Electron. J. Combin. 7 (2000).
20. Evdokimov, S. A. and Ponomarenko, I. N., ‘Characterization of cyclotomic schemes and normal Schur rings over a cyclic group’, St. Petersburg Math. J. 14 (2003) 189221.
21. Evdokimov, S. A. and Ponomarenko, I. N., ‘Permutation group approach to association schemes’, European J. Combin. 30 (2009) 14561476.
22. Ford, K., ‘The distribution of integers with a divisor in a given interval’, Ann. of Math. (2) 168 (2008) 367433.
23. Gao, S., ‘On the deterministic complexity of factoring polynomials’, J. Symbolic Comput. 31 (2001) 1936.
24. Goldbach, R. W. and Claasen, H. L., ‘Cyclotomic schemes over finite rings’, Indag. Math. 3 (1992) 301312.
25. Hanaki, A. and Uno, K., ‘Algebraic structure of association schemes of prime order’, J. Algebraic Combin. 23 (2006) 189195.
26. Heath-Brown, D. R., ‘Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression’, Proc. Lond. Math. Soc. 64 (1992) 265338.
27. Higman, D. G., ‘Coherent configurations I’, Rend. Semin. Mat. Univ. Padova 44 (1970) 125.
28. Huang, M. A., ‘Factorization of polynomials over finite fields and factorization of primes in algebraic number fields’, Proceedings of the 16th Annual ACM Symposium on Theory of Computing (STOC) (1984) 175182.
29. Huang, M. A., ‘Generalized Riemann hypothesis and factoring polynomials over finite fields’, J. Algorithms 12 (1991) 464481.
30. Ivanyos, G., Karpinski, M., Rónyai, L. and Saxena, N., ‘Trading GRH for algebra: algorithms for factoring polynomials and related structures’, Math. Comput. 81 (2012) 493531.
31. Ivanyos, G., Karpinski, M. and Saxena, N., ‘Schemes for deterministic polynomial factoring’, 34th International Symposium on Symbolic and Algebraic Computation, 2009, 191–198.
32. Kaltofen, E. and Shoup, V., ‘Subquadratic-time factoring of polynomials over finite fields’, Math. Comput. 67 (1998) 11791197.
33. Kanold, H. J., ‘Elementare Betrachtungen zur Primzahltheorie’, Arch. Math. 14 (1963) 147151.
34. Kanold, H. J., ‘Über Primzahlen in Arithmetischen Folgen’, Math. Ann. 156 (1964) 393395.
35. Kedlaya, K. S. and Umans, C., ‘Fast polynomial factorization and modular composition’, SIAM J. Comput. 40 (2011) 17671802.
36. Krasner, M., ‘Une généralisation de la notion de corps’, J. Math. Pures Appl. 17 (1938) 367385.
37. Linnik, Y. V., ‘On the least prime in an arithmetic progression I. The basic theorem’, Rec. Math. (Mat. Sbornik ) N.S. 15 (1944) 139178.
38. Mignotte, M. and Schnorr, C. P., ‘Calcul déterministe des racines d’un polynôme dans un corps fini’, C. R. Math. Acad. Sci. 306 (1988) 467472.
39. Moenck, R. T., ‘On the efficiency of algorithms for polynomial factoring’, Math. Comp. 31 (1977) 235250.
40. Muzychuk, M. and Ponomarenko, I., ‘On pseudocyclic association schemes’, ARS Math. Contemp. 5 (2012) 125.
41. Rabin, M. O., ‘Probabilistic algorithms in finite fields’, SIAM J. Comput. 9 (1980) 273280.
42. Riemann, B., ‘Über die Anzahl der Primzahlen unter einer gegebenen Grösse’, Monatsberichte Berliner Akad., 1859.
43. Rónyai, L., ‘Factoring polynomials over finite fields’, J. Algorithms 9 (1988) 391400.
44. Rónyai, L., ‘Factoring polynomials modulo special primes’, Combinatorica 9 (1989) 199206.
45. Rónyai, L., ‘Galois groups and factoring polynomials over finite fields’, SIAM J. Discrete Math. 5 (1992) 345365.
46. Saha, C., ‘Factoring polynomials over finite fields using balance test’, 25th STACS (2008) 609–620.
47. Schinzel, A. and Sierpinski, W., ‘Sur certaines hypothèses concernant les nombres premiers’, Acta Arith. 4 (1958) 345365.
48. Smith, J. D. H., ‘Association schemes, superschemes, and relations invariant under permutation groups’, European J. Combin. 15 (1994) 285291.
49. Voight, J., ‘Curves over finite fields with many points: an introduction’, Computational aspects of algebraic curves, Lecture Notes Series on Computing 13 (ed. Shaska Tanush; World Scientific, Hackensack, NJ, 2005) 124–144.
50. von zur Gathen, J., ‘Factoring polynomials and primitive elements for special primes’, Theoret. Comput. Sci. 52 (1987) 7789.
51. von zur Gathen, J. and Shoup, V., ‘Computing Frobenius maps and factoring polynomials’, Comput. Complexity 2 (1992) 187224.
52. Weil, A., Courbes Algébriques et Variétés Abelienne (Hermann, 1971).
53. Weisfeiler, Y. B. and Lehman, A. A., ‘Reduction of a graph to a canonical form and an algebra which appears in this process (Russian)’, Sci.-Technol. Investig. 9 (1968) 1216.
54. Wojdyło, J., ‘Relation algebras and $t$ -vertex condition graphs’, European J. Combin. 19 (1998) 981986.
55. Wojdyło, J., ‘An inextensible association scheme associated with a 4-regular graph’, Graphs Combin. 1 (2001) 185192.
56. Wojdyło, J., ‘Presuperschemes and colored directed graphs’, JCMCC 38 (2001) 4554.
57. Xylouris, T., ‘Über die Nullstellen der Dirichletschen L-Funktionen und die Kleinste Primzahl in einer Arithmetischen Progression’, PhD Thesis, Mathematisch-Naturwissenschaftliche Fakultät der Universität Bonn, 2011.
58. Zieschang, P.-H., Theory of association schemes (Springer, 2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

LMS Journal of Computation and Mathematics
  • ISSN: -
  • EISSN: 1461-1570
  • URL: /core/journals/lms-journal-of-computation-and-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed