Skip to main content Accessibility help
×
Home

The Brauer characters of the sporadic simple Harada–Norton group and its automorphism group in characteristics 2 and 3

  • Gerhard Hiss (a1), Jürgen Müller (a2), Felix Noeske (a3) and Jon Thackray (a4)

Abstract

We determine the 2-modular and 3-modular character tables of the sporadic simple Harada–Norton group and its automorphism group.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Brauer characters of the sporadic simple Harada–Norton group and its automorphism group in characteristics 2 and 3
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Brauer characters of the sporadic simple Harada–Norton group and its automorphism group in characteristics 2 and 3
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Brauer characters of the sporadic simple Harada–Norton group and its automorphism group in characteristics 2 and 3
      Available formats
      ×

Copyright

References

Hide All
[1]Breuer, T., ‘CTblLib–a GAP package, version 1.1.3’, 2004, http://www.gap-system.org/Packages/ctbllib.html,.
[2]Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups: Maximal subgroups and ordinary characters for simple groups, with computational assistance from J. G. Thackray (Oxford University Press, Eynsham, 1985).
[3]Erdmann, K., ‘Algebras and semidihedral defect groups. II’, Proc. Lond. Math. Soc. (3) 60 (1990) no. 1, 123165.
[4] The GAP group, ‘GAP—groups, algorithms, and programming, version 4.4.12’, 2008, http://www.gap-system.org.
[5]Henke, A., Hiss, G. and Müller, J., ‘The 7-modular decomposition matrices of the sporadic O’Nan group’, J. Lond. Math. Soc. (2) 60 (1999) no. 1, 5870.
[6]Hiss, G., Jansen, C., Lux, K. and Parker, R. A., ‘Computational modular character theory’, http://www.math.rwth-aachen.de/MOC/CoMoChaT.
[7]Hiss, G. and Lux, K., Brauer trees of sporadic groups (Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1989).
[8]Jansen, C., Lux, K., Parker, R. and Wilson, R., ‘An atlas of Brauer characters’, London Mathematical Society Monographs, New Series 11 (The Clarendon Press, Oxford University Press, New York, 1995) Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications.
[9]Koshitani, S. and Müller, J., ‘Broué’s abelian defect group conjecture holds for the Harada-Norton sporadic simple group HN’, J. Algebra 324 (2010) no. 3, 394429.
[10]Landrock, P., ‘The non-principal 2-blocks of sporadic simple groups’, Comm. Algebra 6 (1978) no. 18, 18651891.
[11]Landrock, P., Finite group algebras and their modules, London Mathematical Society Lecture Note Series, vol. 84 (Cambridge University Press, Cambridge, 1983).
[12]Lux, K., Müller, J. and Ringe, M., ‘Peakword condensation and submodule lattices: an application of the MEAT-AXE’, J. Symbolic Comput. 17 (1994) no. 6, 529544.
[13]Lux, K., Neunhöffer, M. and Noeske, F., ‘Condensation of homomorphism spaces’, LMS J. Comput. Math. 15 (2012) 140157.
[14]Lux, K., Noeske, F. and Ryba, Alexander J. E., ‘The 5-modular characters of the sporadic simple Harada-Norton group HN and its automorphism group HN.2’, J. Algebra 319 (2008) no. 1, 320335.
[15]Lux, K. and Pahlings, H., Representations of groups: A computational approach, Cambridge Studies in Advanced Mathematics 124 (Cambridge University Press, Cambridge, 2010).
[16]Lux, K. and Wiegelmann, M., ‘Condensing tensor product modules’, The atlas of finite groups: ten years on (Birmingham, 1995), London Math. Soc. Lecture Note Ser. 249 (Cambridge University Press, Cambridge, 1998) 174190.
[17]Lux, K. and Wiegelmann, M., ‘Determination of socle series using the condensation method. Computational algebra and number theory: Proceedings of the Second Magma Conference (Milwaukee, WI, 1996)’, J. Symbolic Comput. 31 (2001) no. 1–2, 163178.
[18]Müller, J., On endomorphism rings and character tables, Habilitationsschrift, RWTH Aachen, 2003.
[19]Müller, J., Neunhöffer, M. and Noeske, F., ‘orb—a GAP package, Version 3.7’, 2011, http://www.gap-system.org/Packages/orb.html.
[20]Noeske, F., ‘Tackling the generation problem in condensation’, J. Algebra 309 (2007) no. 2, 711722.
[21]Noeske, F., ‘Matching simple modules of condensed algebras’, LMS J. Comput. Math. 11 (2008) 213222.
[22]Noeske, F., ‘Matching simple modules of condensation algebras’, LMS J. Comput. Math., to appear.
[23]Norton, S. P. and Wilson, R. A., ‘Maximal subgroups of the Harada–Norton group’, J. Algebra 103 (1986) no. 1, 362376.
[24]Olsson, J. B., ‘On 2-blocks with quaternion and quasidihedral defect groups’, J. Algebra 36 (1975) no. 2, 212241.
[25]Parker, R. A., ‘The computer calculation of modular characters (the meat-axe)’, Computational group theory (Durham, 1982) (Academic Press, London, 1984) 267274.
[26]Ringe, M., ‘C-MeatAxe, version 2.4’, 2009, http://www.math.rwth-aachen.de/homes/MTX/.
[27]Ryba, A. J. E., ‘Computer condensation of modular representations. Computational group theory, Part 1’, J. Symbolic Comput. 9 (1990) no. 5–6, 591600.
[28]Thackray, J. G., ‘Modular representations of some finite groups’, PhD Thesis, University of Cambridge, 1981.
[29]Wilson, R., Walsh, P., Tripp, J., Suleiman, I., Parker, R., Norton, S., Nickerson, S., Linton, S., Bray, J. and Abbott, R., ‘ATLAS of finite group representations’, 2006, http://brauer.maths.qmul.ac.uk/Atlas/v3.
[30]Wilson, R. A., Parker, R. A., Nickerson, S., Bray, J. and Breuer, T., ‘AtlasRep—a GAP interface to the ATLAS of finite group representations, Version 1.4.0’, 2008, http://www.gap-system.org/Packages/atlasrep.html.
[31]Wilson, R. A., Thackray, J. G., Parker, R. A., Noeske, F., Müller, J., Lux, K., Lübeck, F., Jansen, C., Hiss, G. and Breuer, T., ‘The modular atlas project’, http://www.math.rwth-aachen.de/∼MOC.
[32]Wilson, R. A., ‘Standard generators for sporadic simple groups’, J. Algebra 184 (1996) no. 2, 505515.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

The Brauer characters of the sporadic simple Harada–Norton group and its automorphism group in characteristics 2 and 3

  • Gerhard Hiss (a1), Jürgen Müller (a2), Felix Noeske (a3) and Jon Thackray (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed