Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T21:47:56.343Z Has data issue: false hasContentIssue false

Characterization of the mating-type locus (MAT) reveals a heterothallic mating system in Knightiella splachnirima

Published online by Cambridge University Press:  24 July 2017

Lars R. LUDWIG
Affiliation:
Department of Botany, University of Otago, Dunedin, New Zealand. Email: lars.ludwig@botany.otago.ac.nz; lars-ludwig@gmx.de
Tina C. SUMMERFIELD
Affiliation:
Department of Botany, University of Otago, Dunedin, New Zealand. Email: lars.ludwig@botany.otago.ac.nz; lars-ludwig@gmx.de
Janice M. LORD
Affiliation:
Department of Botany, University of Otago, Dunedin, New Zealand. Email: lars.ludwig@botany.otago.ac.nz; lars-ludwig@gmx.de
Garima SINGH
Affiliation:
Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität, Frankfurt, Germany Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany

Abstract

In the present study, we characterized the mating-type locus of Knightiella splachnirima (Icmadophilaceae) using degenerate and inverse PCR techniques. We screened for the presence of both mating-type locus idiomorphs in DNA extracts of minuscule samples of haploid thalline tissue. We found that only one of the two idiomorphs was present in each sample, and the mating-type ratio (MAT1-1:MAT1-2) was very balanced, being 8:10 and 13:14 at local and global scales, respectively. This indicates that the species is probably self-incompatible and requires the presence of compatible mating partners for sexual reproduction (heterothallic mating system). Furthermore, we provide a mating-type screening protocol with K. splachnirima specific mating-type locus primers, which could serve as an essential tool for the conservation management of this rare Australasian endemic.

Type
Articles
Copyright
© British Lichen Society, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A. F. (2006) Evolution of sex: why do organisms shuffle their genotypes? Current Biology 16: R696R704.Google Scholar
Beatty, N. P., Smith, M. L. & Glass, L. N. (1994) Molecular characterization of mating-type loci in selected homothallic species of Neurospora, Gelasinospora and Anixiella . Mycological Research 98: 13091316.Google Scholar
Bell, G. (1982) The Masterpiece of Nature. The Evolution and Genetics of Sexuality. Berkeley: University of California Press.Google Scholar
Butler, G. (2007) The evolution of MAT: the Ascomycetes. In Sex in Fungi: Molecular Determination and Evolutionary Implications (J. Heitman, J. W. Kronstad, J. W. Taylor & L. A. Casselton, eds): 318. Washington, D.C.: ASM Press.Google Scholar
Charlesworth, B. (1990) Mutation-selection balance and the evolutionary advantage of sex and recombination. Genetics Research 55: 199221.CrossRefGoogle ScholarPubMed
Cubero, O. F., Crespo, A., Fatehi, J. & Bridge, P. D. (1999) DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Systematics and Evolution 216: 243249.Google Scholar
De Lange, P. J., Galloway, D. J., Blanchon, D. J., Knight, A., Rolfe, J. R., Crowcroft, G. M. & Hitchmough, R. (2012) Conservation status of New Zealand lichens. New Zealand Journal of Botany 50: 303363.Google Scholar
Debuchy, R., Berteaux-Lecellier, V. & Silar, P. (2010) Mating systems and sexual morphogenesis in Ascomycetes. In Cellular and Molecular Biology of Filamentous Fungi (K. A. Borkovich & D. J. Ebbole, eds): 501535. Washington, D.C.: ASM Press.Google Scholar
Dyer, P. S., Inderbitzin, P. & Debuchy, R. (2016) Mating-type structure, function, regulation and evolution in the Pezizomycotina. In The Mycota I. Growth, Differentiation and Sexuality, 3rd edition (J. Wendland, ed.): 351385. Heidelberg: Springer.Google Scholar
Galloway, D. J. (2000) Knightiella belongs in Icmadophila (Helotiales: Icmadophilaceae). Lichenologist 32: 294297.CrossRefGoogle Scholar
Galloway, D. J. (2007) Flora of New Zealand lichens. Revised Second Edition Including Lichen-forming and Lichenicolous Fungi. Volumes 1 and 2. Lincoln, New Zealand: Manaaki Whenua Press.Google Scholar
Galloway, D. J. & Elix, J. A. (1980) Knightiella Müll. Arg., a monotypic lichen genus from Australasia. New Zealand Journal of Botany 18: 481486.CrossRefGoogle Scholar
Gauslaa, Y. (2013) Why are Lobarion species rare? British Lichen Society Bulletin 112: 140156.Google Scholar
Gauslaa, Y. & Solhaug, K. A. (1999) High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria – interactions of irradiance, exposure duration and high temperature. Journal of Experimental Biology 50: 697705.Google Scholar
Gioti, A., Mushegian, A. A., Strandberg, R., Stajich, J. E. & Johannesson, H. (2012) Unidirectional evolutionary transitions in fungal mating systems and the role of transposable elements. Molecular Biology and Evolution 29: 32153226.Google Scholar
Glass, N. L. & Smith, M. L. (1994) Structure and function of a mating-type gene from the homothallic species Neurospora africana . Molecular Genetics and Genomics 244: 401409.Google Scholar
Glass, N. L., Grotelueschen, J. & Metzenberg, R. L. (1990) Neurospora crassa A mating-type region. Proceedings of the National Academy of Sciences of the United States of America 87: 49124916.Google Scholar
Honegger, R. & Scherrer, S. (2008) Sexual reproduction in lichen-forming ascomycetes. In Lichen Biology, 2nd edition (T. H. Nash III, ed.): 94103. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Honegger, R. & Zippler, U. (2007) Mating systems in representatives of Parmeliaceae, Ramalinaceae and Physciaceae (Lecanoromycetes, lichen-forming ascomycetes). Mycological Research 111: 424432.Google Scholar
Honegger, R., Zippler, U., Gansner, H. & Scherrer, S. (2004) Mating systems in the genus Xanthoria (lichen-forming ascomycetes). Mycological Research 108: 480488.CrossRefGoogle ScholarPubMed
Jüriado, I. & Liira, J. (2009) Distribution and habitat ecology of the threatened forest lichen Lobaria pulmonaria in Estonia. Folia Cryptogamica Estonica 46: 5565.Google Scholar
Lin, X. & Heitman, J. (2007) Mechanisms of homothallism in fungi and transitions between heterothallism and homothallism. In Sex in Fungi: Molecular Determination and Evolutionary Implications (J. Heitman, J. W. Kronstad, J. W. Taylor & L. A. Casselton, eds): 3558. Washington, D.C.: ASM Press.Google Scholar
Ludwig, L. R. (2011) Marginal soralia and conidiomata in Icmadophila splachnirima (Icmadophilaceae) from southern New Zealand. Australasian Lichenology 68: 411.Google Scholar
Ludwig, L. R. (2012) BLS Summer Vacation Scholarship report – a New Zealand lichen study. British Lichen Society Bulletin 110: 1420.Google Scholar
Ludwig, L. R. (2015) The reproductive ecology of Icmadophila splachnirima, including aspects of the reproduction in additional members of Icmadophilaceae. Ph.D. thesis, University of Otago.Google Scholar
Ludwig, L. R. (2016) The biogeography of Knightiella splachnirima . Australasian Lichenology 78: 4651.Google Scholar
Martin, S. H., Wingfield, B. D., Wingfield, M. J. & Steenkamp, E. T. (2011) Structure and evolution of the Fusarium mating type locus: new insights from the Gibberella fujikuroi complex. Fungal Genetics and Biology 48: 731740.Google Scholar
McDonald, T. R., Mueller, O., Dietrich, F. S. & Lutzoni, F. (2013) High-throughput genome sequencing of lichenizing fungi to assess gene loss in the ammonium transporter/ammonia permease gene family. BMC Genomics 14: 225.Google Scholar
Mikryukov, V. S., Mikhailova, I. N. & Scheidegger, C. (2010) Reproductive parameters of Lobaria pulmonaria (L.) Hoffm. in the Urals. Russian Journal of Ecology 41: 475479.CrossRefGoogle Scholar
Murtagh, G. J., Dyer, P. S. & Crittenden, P. D. (2000) Reproductive systems: sex and the single lichen. Nature 404: 564.Google Scholar
Ni, M., Feretzaki, M., Sun, S., Wang, X. & Heitman, J. (2011) Sex in fungi. Annual Review of Genetics 45: 405430.Google Scholar
Ochman, H., Gerber, A. S. & Hartl, D. L. (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120: 621623.Google Scholar
Pöggeler, S., O’Gorman, C. M., Hoff, B. & Kuck, U. (2011) Molecular organization of the mating-type loci in the homothallic Ascomycete Eupenicillium crustaceum . Fungal Biology 115: 615624.Google Scholar
Saleh, D., Xu, P., Shen, Y., Li, C., Adreit, H., Milazzo, J., Ravigne, V., Bazin, E., Notteghem, J. L., Fournier, E. et al. (2012) Sex at the origin: an Asian population of the rice blast fungus Magnaporthe oryzae reproduces sexually. Molecular Ecology 21: 13301344.Google Scholar
Scherrer, S., Zippler, U. & Honegger, R. (2005) Characterisation of the mating-type locus in the genus Xanthoria (lichen-forming ascomycetes, Lecanoromycetes). Fungal Genetics and Biology 42: 976988.Google Scholar
Schneider-Poetsch, T., Usui, T., Kaida, D. & Yoshida, M. (2010) Garbled messages and corrupted translations. Nature Chemical Biology 6: 189198.Google Scholar
Schwartz, S., Silva, J., Burstein, D., Pupko, T., Eyras, E. & Ast, G. (2007) Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Research 18: 88103.Google Scholar
Seymour, F. A., Crittenden, P. D., Dickinson, M. J., Paoletti, M., Montiel, D., Cho, L. & Dyer, P. S. (2005) Breeding systems in the lichen-forming fungal genus Cladonia . Fungal Genetics and Biology 42: 554563.CrossRefGoogle ScholarPubMed
Singh, G., Dal Grande, F., Cornejo, C., Schmitt, I. & Scheidegger, C. (2012) Genetic basis of self-incompatibility in the lichen-forming fungus Lobaria pulmonaria and skewed frequency distribution of mating-type idiomorphs: implications for conservation. PLoS ONE 7: e51402.Google Scholar
Singh, G., Dal Grande, F., Werth, S. & Scheidegger, C. (2015) Long-term consequences of disturbances on reproductive strategies of the rare epiphytic lichen Lobaria pulmonaria: clonality a gift and a curse. FEMS Microbiology Ecology 91: 111.Google Scholar
Stenroos, S., Myllys, L., Thell, A. & Hyvönen, J. (2002) Phylogenetic hypotheses: Cladoniaceae, Stereocaulaceae, Baeomycetaceae, and Icmadophilaceae revisited. Mycological Progress 1: 267282.Google Scholar
Summerfield, T. C. (2003) Investigation of symbiont specificity in cyanolichens and differential gene expression in symbiotic Nostoc strains. Ph.D. thesis, University of Otago.Google Scholar
Sun, S. & Heitman, J. (2011) Is sex necessary? BMC Biology 9: 56.Google Scholar
Turgeon, B. G. (1998) Application of mating type gene technology to problems in fungal biology. Annual Review of Phytopathology 36: 115137.Google Scholar
Turgeon, B. G. & Yoder, O. C. (2000) Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genetics and Biology 31: 15.Google Scholar
Wilson, A. M., Wilken, P. M., van der Nest, M. A., Steenkamp, E. T., Wingfield, M. J. & Wingfield, B. D. (2015) Homothallism: an umbrella term for describing diverse sexual behaviours. IMA Fungus 6: 207214.Google Scholar
Wirth, V. (2010) Ökologische Zeigerwerte von Flechten – Erweiterte und Aktualisierte Fassung. [Ecological indicator values of lichens - enlarged and updated species list]. Herzogia 23: 229248.Google Scholar
Ye, J., Ji, A., Parra, E. J., Zheng, X., Jiang, C., Zhao, X., Hu, L. & Tu, Z. (2004) A simple and efficient method for extracting DNA from old and burned bone. Journal of Forensic Sciences 49: 16.Google Scholar
Supplementary material: File

Ludwig supplementary material

Ludwig supplementary material 1

Download Ludwig supplementary material(File)
File 17.6 KB
Supplementary material: PDF

Ludwig supplementary material

Ludwig supplementary material 2

Download Ludwig supplementary material(PDF)
PDF 1.1 MB