Skip to main content Accessibility help

The weakened Weibel instability of collimated fast electron beam in nanotube array

  • L. Liao (a1), R. Zhao (a1), Y. Bie (a2), H. Zhang (a3) and C. Hu (a1)...


The Weibel instability of the collimated MeV fast electron beams in a nanotube array target is researched in this work. It is found that the filamentation of the fast electrons is significantly suppressed. When fast electrons propagate the nanotube array, a strong magnetic field is created near the surface of tubes to obstruct the transverse movement of the fast electrons and bend them into the inner vacuum spaces between the successive tubes. In consequence, the positive feedback loop between the magnetic field perturbation and the electrons density perturbation is broken and the Weibel instability is thus weakened. Furthermore, the calculated results by a hybrid particle-in-cell code have also proven this weakening effect on the Weibel instability. Because of the high-energy density delivered by the MeV electrons, these results indicate some significant applications in the high-energy physics, such as radiography, fast-electron beam focusing, and perhaps fast ignition.


Corresponding author

Address correspondence and reprint requests to: R. Zhao, School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, People's Republic of China. E-mail:


Hide All
Atzeni, S., M.-t.-V.J., (2003). Inertial Fusion-Beam Plasma Interaction, Hydrodynamic, Dense Plasma Physics. Oxford: Clarendon.
Borghesi, M., Mackinnon, A.J., Bell, A.R., Malka, G., Vickers, C., Willi, O., Davies, J.R., Pukhov, A. & Meyer-ter-Vehn, J. (1999). Observations of collimated ionization channels in aluminum-coated glass targets irradiated by ultraintense laser pulses. Phys. Rev. Lett. 83, 43094312.
Campbell, R.B., DeGroot, J.S., Mehlhorn, T.A., Welch, D.R. & Oliver, B.V. (2003). Collimation of PetaWatt laser-generated relativistic electron beams propagating through solid matter. Phys. Plasmas 10, 41694172.
Chatterjee, G., Singh, P.K., Ahmed, S., Robinson, A.P.L., Lad, A.D., Mondal, S., Narayanan, V., Srivastava, I., Koratkar, N., Pasley, J., Sood, A.K. & Kumar, G.R. (2012). Macroscopic transport of mega-ampere electron currents in aligned carbon-nanotube arrays. Phys. Rev. Lett. 108, 235005.
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, J.L., Fell, B., Frackiewicz, A., Hancock, S., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C.J., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2004). Vulcan Petawatt – an ultra-high-intensity interaction facility. Nucl. Fusion 44, S239S246.
Gibbon, P. (2005). Short Pulse Laser Interactions with Matter: an Introduction. London: College Press.
Green, J.S., Ovchinnikov, V.M., Evans, R.G., Akli, K.U., Azechi, H., Beg, F.N., Bellei, C., Freeman, R.R., Habara, H., Heathcote, R., Key, M.H., King, J.A., Lancaster, K.L., Lopes, N.C., Ma, T., MacKinnon, A.J., Markey, K., McPhee, A., Najmudin, Z., Nilson, P., Onofrei, R., Stephens, R., Takeda, K., Tanaka, K.A., Theobald, W., Tanimoto, T., Waugh, J., Van Woerkom, L., Woolsey, N.C., Zepf, M., Davies, J.R. & Norreys, P.A. (2008). Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. Phys. Rev. Lett. 100, 015003.
Ji, Y.L., Jiang, G., Wu, W.D., Wang, C.Y., Gu, Y.Q. & Tang, Y.J. (2010). Efficient generation and transportation of energetic electrons in a carbon nanotube array target. Appl. Phys. Lett. 96, 041504.
Kar, S., Robinson, A.P.L., Carroll, D.C., Lundh, O., Markey, K., McKenna, P., Norreys, P. & Zepf, M. (2009). Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields. Phys. Rev. Lett. 102, 055001.
Kodama, R., Azechi, H., Fujita, H., Habara, H., Izawa, Y., Jitsuno, T., Jozaki, T., Kitagawa, Y., Krushelnick, K., Matsuoka, T., Mima, K., Miyanaga, N., Nagai, K., Nagatomo, H., Nakai, M., Nishimura, H., Norimatsu, T., Norreys, P., Shigemori, K., Shiraga, H., Sunahara, A., Tanaka, K.A., Tanpo, M., Toyama, Y., Tsubakimoto, K., Yamanaka, T. & Zepf, M. (2004 a). Fast plasma heating in a cone-attached geometry – towards fusion ignition. Nucl. Fusion 44, S276S283.
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, Y. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798802.
Kodama, R., Sentoku, Y., Chen, Z.L., Kumar, G.R., Hatchett, S.P., Toyama, Y., Cowan, T.E., Freeman, R.R., Fuchs, J., Izawa, Y., Key, M.H., Kitagawa, Y., Kondo, K., Matsuoka, T., Nakamura, H., Nakatsutsumi, M., Norreys, P.A., Norimatsu, T., Snavely, R.A., Stephens, R.B., Tampo, M., Tanaka, K.A. & Yabuuchi, T. (2004 b). Plasma devices to guide and collimate a high density of MeV electrons. Nature 432, 10051008.
Lancaster, K.L., Green, J.S., Hey, D.S., Akli, K.U., Davies, J.R., Clarke, R.J., Freeman, R.R., Habara, H., Key, M.H., Kodama, R., Krushelnick, K., Murphy, C.D., Nakatsutsumi, M., Simpson, P., Stephens, R., Stoeckl, C., Yabuuchi, T., Zepf, M. & Norreys, P.A. (2007). Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5 × 10(20) W cm(−2) . Phys. Rev. Lett. 98, 125002.
Liao, L., Wu, W.D., Gu, Y.Q., Zhou, W.M., Wang, C.Y., Fu, Z.B., Yang, X. & Tang, Y.J. (2013). Production of collimated MeV electron beam in carbon nanotube array irradiated by super-intense femtosecond laser. Carbon 65, 2834.
Liao, L., Wu, W.D., Wang, C.Y., Zhou, M.J., Fu, Z.B. & Tang, Y.J. (2014). The collimation of intense relativistic electron beams generated by ultra-intense femtosecond laser in nanometer-scale solid fiber array. Appl. Phys. Lett. 104, 083520.
Mishra, S.K., Kaw, P., Das, A., Sengupta, S. & Kumar, G.R. (2014). Stabilization of beam-Weibel instability by equilibrium density ripples. Phys. Plasmas 21, 012108.
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H., Mima, K. & Koga, J. (2007). Optimization of cone target geometry for fast ignition. Phys. Plasmas 14, 103105.
Park, H.S., Chambers, D.M., Chung, H.K., Clarke, R.J., Eagleton, R., Giraldez, E., Goldsack, T., Heathcote, R., Izumi, N., Key, M.H., King, J.A., Koch, J.A., Landen, O.L., Nikroo, A., Patel, P.K., Price, D.F., Remington, B.A., Robey, H.F., Snavely, R.A., Steinman, D.A., Stephens, R.B., Stoeckl, C., Storm, M., Tabak, M., Theobald, W., Town, R.P.J., Wickersham, J.E. & Zhang, B.B. (2006). High-energy K alpha radiography using high-intensity, short-pulse lasers. Phys. Plasmas 13, 056309.
Perry, M.D. & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Science 264, 917924.
Robinson, A.P.L., Kingham, R.J., Ridgers, C.P. & Sherlock, M. (2008 a). Effect of transverse density modulations on fast electron transport in dense plasmas. Plasma Phys. Control. Fusion 50, 065019.
Robinson, A.P.L. & Sherlock, M. (2007). Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition. Phys. Plasmas 14, 083105.
Robinson, A.P.L., Sherlock, M. & Norreys, P.A. (2008 b). Artificial collimation of fast-electron beams with two laser pulses. Phys. Rev. Lett. 100, 025002.
Santos, J.J., Amiranoff, F., Baton, S.D., Gremillet, L., Koenig, M., Martinolli, E., Le Gloahec, M.R., Rousseaux, C., Batani, D., Bernardinello, A., Greison, G. & Hall, T. (2002). Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics. Phys. Rev. Lett. 89, 207213.
Sentoku, Y., Mima, K., Kojima, S. & Ruhl, H. (2000). Magnetic instability by the relativistic laser pulses in overdense plasmas. Phys. Plasmas 7, 689695.
Spitzer, L. & Harm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977981.
Stephens, R.B., Snavely, R.A., Aglitskiy, Y., Amiranoff, F., Andersen, C., Batani, D., Baton, S.D., Cowan, T., Freeman, R.R., Hall, T., Hatchett, S.P., Hill, J.M., Key, M.H., King, J.A., Koch, J.A., Koenig, M., MacKinnon, A.J., Lancaster, K.L., Martinolli, E., Norreys, P., Perelli-Cippo, E., Le Gloahec, M.R., Rousseaux, C., Santos, J.J. & Scianitti, F. (2004). K-alpha fluorescence measurement of relativistic electron transport in the context of fast ignition. Phys. Rev. E 69, 039901.
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high-gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.
Weibel, E.S. (1959). Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 8384.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed