Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T01:02:07.917Z Has data issue: false hasContentIssue false

Ways to discharge-based soft X-ray lasers with the wavelength λ<15 nm

Published online by Cambridge University Press:  06 May 2008

K. Kolacek*
Affiliation:
Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
J. Schmidt
Affiliation:
Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
V. Prukner
Affiliation:
Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
O. Frolov
Affiliation:
Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
J. Straus
Affiliation:
Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
*
Address correspondence and reprint requests to: K. Kolacek, Institute of Plasma Physics, Academy of Sciences of the Czech Republic, v.v.i., Za Slovankou 3, 182 00 Prague 8, Czech Republic. E-mail: kolacek@ipp.cas.cz

Abstract

Two basic ways to amplification of spontaneous emission in the soft X-ray region are described. The first is based on the electron-collisional recombination pumping scheme, which uses recombination of fully stripped ions into hydrogen-like ions to create (in the case of sufficiently fast cooling) a population inversion on energy levels belonging to the Balmer-alpha transition. We test this scheme on nitrogen, for which the lasing wavelength is 13.4 nm. The second way to amplification of spontaneous emission is based on the electron-collisional excitation pumping scheme: this uses for creation of population inversion a fast excitation of Ne- or Ni-like ions. However, for wavelength below 15 nm it is necessary to use Ni-like ions of some metal vapors. Feeding metal vapors into a capillary is difficult, and if being fed they deposit on the capillary wall and significantly reduce the capillary lifetime. That is why we prepare metal vapor plasma in a capillary with liquid wall – by wire explosion in water. For slowdown of the plasma-channel expansion a local-water-compression by linearly focused shock wave is being developed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ben-Kish, A., Shuker, M., Nemirovsky, R.A., Avni, U., Fisher, A., Ron, A. & Schwob, J.L. (2001). Investigating the dynamics of fast capillary discharges leads to soft X-ray laser realization at 46.9 nm. J. Phys. IV 11, 99102.Google Scholar
Boboc, T., Weigand, F. & Langhoff, H. (2000). Intensity enhancement of the C5+ Balmer radiation excited by capillary discharge pumping. Appl. Phys. B 70, 399405.CrossRefGoogle Scholar
Bobrova, N.A., Bulanov, S.V., Esaulov, A.A. & Sasorov, P.V. (2000). Capillary discharge for guiding of laser pulses. Plasma Phys. Rept. 26, 1020.CrossRefGoogle Scholar
Boss, T., Neff, W., Boboc, T., Weigand, F., Bischoff, R. & Langhof, H. (1998). Optical gain for the Ne VIII 4-3 transition by capillary discharge pumping. J. Phys. D 31, 24722478.CrossRefGoogle Scholar
Chilla, J.L.A. & Rocca, J.J. (1996). Beam optics of gain-guided soft–X-ray lasers in cylindrical plasma. J. Opt. Soc. Am. B 13, 28412851.CrossRefGoogle Scholar
Eberl, E., Wagner, T., Jacoby, J., Tauschwitz, A. & Hoffmann, D.H.H. (1997). Soft X-ray lasing at 519.7 angstrom in a recombining Z-pinch plasma. Laser Part. Beams 15, 589595.CrossRefGoogle Scholar
Ehrlich, Y., Cohen, C., Zigler, A., Krall, J., Sprangle, P. & Esarey, E. (1996). Guiding of high intensity laser pulses in straight and curved plasma channel experiments. Phys. Rev. Letters 77, 41864189.CrossRefGoogle ScholarPubMed
Ellwi, S.S., Juschkin, L., Ferri, S., Kunze, H.-J., Koshelev, K.N. & Louis, E. (2001a). X-ray lasing as a result of an induced instability in an ablative capillary discharge. J. Phys. D 34, 336339.CrossRefGoogle Scholar
Ellwi, S.S., Andreic, Z., Pleslic, S. & Kunze, H.-J. (2001b). Probing of the active layers in a capillary discharge soft X-ray laser at 18.22 nm. Phys. Lett. A 292, 125128.CrossRefGoogle Scholar
Elton, R.C. (1990). X-ray Lasers Boston, MA: Academic Press, Inc.Google Scholar
Frati, M., Seminario, M. & Rocca, J.J. (2000). Demonstration of a 10-mJ tabletop laser at 52.9 nm in neonlike chlorine. Opt. Lett. 25, 10221024.CrossRefGoogle Scholar
Frati, M., Tomasel, F.G., Bowers, B., Gonzales, J.J., Shlyaptsev, V.N. & Rocca, J.J. (2001). Generation of highly ionised cadmium plasma columns for a discharge-pumped nickel-like Cd laser. J. Phys. IV 11, 571574.Google Scholar
Goltsov, A.Y., Korobkin, D.V., Ping, Y. & Suckewer, S. (2000). Transmission of laser radiation through microcapillary plasmas. J. Opt. Soc. Am. B 17, 868876.CrossRefGoogle Scholar
Hayashi, Y., Xiao, Y., Sakamoto, N., Miyahara, H., Niimi, G., Watanabe, M., Okino, A., Horioka, K. & Hotta, E. (2003). Performance of Ne-like Ar soft X-ray laser using capillary Z-pinch discharge. Jap. J. Appl. Phys. 42, 52855289.CrossRefGoogle Scholar
Hildebrand, A., Kroger, M., Kunze, H.-J., Maurmann, S. & Ruhrmann, A. (1996). Amplified spontaneous emission on the J = 2 → 1, 3p-3s transition of neon like argon in a capillary discharge. X-ray Lasers 1996, Inst. Phys. Confer. Ser. 151, 187191.Google Scholar
Hosokai, T., Kondo, S., Kando, M., Nakajima, M., Horioka, K. & Nakajima, K. (1999). Development of plasma wave-guide using fast capillary discharges. Inst. Phys. Confer. Ser. 159, 179182.Google Scholar
Jancarek, A., Pina, L., Vrbova, M., Tamas, M., Havlikova, R., Tomassetti, G., Ritucci, A. & Vrba, P. (2006). Nitrogen capillary discharge emission in 1.9–2.5 nm wavelength range. Czechosl. J. Phys. 56, B250B254.CrossRefGoogle Scholar
Janulewicz, K.A., Rocca, J.J., Bortolotto, F., Sandner, W. & Nickles, P.V. (2000). Collisionally pumped hybrid soft X-ray laser in Ne-like sulphur. Comptes Rendus A Sci IV Phys. Astrophys, 1, 10831092.Google Scholar
Janulewicz, K.A., Rocca, J.J., Bortolotto, F., Kalachnikov, M.P., Shlyaptsev, V.N., Wandner, W. & Nickles, P.V. (2001). Demonstration of a hybrid collisional soft-x-ray laser. Phys. Rev. A 6303, 3803.Google Scholar
Janulewicz, K.A., Bortolotto, F., Lucianetti, A., Sandner, W., Nickles, P.V., Rocca, J., Bobrova, N. & Sasorov, P.V. (2003). Fast capillary discharge plasma as a preformed medium for longitudinally pumped collisional X-ray lasers. J. Opt. Soc. Am B 20, 215220.CrossRefGoogle Scholar
Janulewicz, K.A., Schnurer, M., Tummler, J., Priebe, G., Risse, E., Nickles, P.V., Greenberg, B., Levin, M., Pukhov, A., Mandelbaum, A. & Zigler, A. (2005). Enhancement of 24.77-nm line emitted by the plasma of boron nitride capillary discharge irradiated by a high-intensity ultrashort laser pulse. Opt. Lett. 30, 15721574.CrossRefGoogle ScholarPubMed
Kaganovich, D., Ting, A., Moore, C.I., Zigler, A., Burris, H.R., Ehrlich, Y., Hubbard, R. & Sprangle, P. (1999). High efficiency guiding of terawatt subpicosecond laser pulses in a capillary discharge plasma channel. Phys. Rev. E 59, R4769R4772.CrossRefGoogle Scholar
Kirsch, I., Choi, P., Larour, J. & Rous, J. (2001). Ultrafast hollow cathode triggered capillary discharge device as a strong XUV source. J. Phys. IV 11, 605608.Google Scholar
Kolacek, K. (2002). Principles and present state of capillary-discharge-pumped soft X-ray lasers. Proc. SPIE 5228 27th ECLIM 2002, Moscow, Russia (Eds.: Krokhin, O.N., Guskov, S.Yu., Merkulev, Yu.A.), 557573.Google Scholar
Kolacek, K., Schmidt, J., Prukner, V., Sunka, P., Frolov, O., Straus, J. & Martinkova, M. (2005). Wire exploding in a focus of converging cylindrical shock wave in water – introductory remarks. IEEE 15th IPPC, Monterey, Ca., USA, June 13–17, Digest of Technical Papers 1976–2005, 280–283.Google Scholar
Korobkin, D.V., Nam, C.H., Suckewer, S. & Golstov, A. (1996). Demonstration of soft X-ray lasing to ground state in Li III. Phys. Rev. Lett. 77, 52065209.CrossRefGoogle Scholar
Koshelev, K.N. & Kunze, H.-J. (1997). Population inversion in a discharge plasma with neck-type instabilities. Quan. Electron. 27, 164167.CrossRefGoogle Scholar
Kunze, H.-J., Koshelev, K.N., Steden, C., Uskov, D. & Wieschebrink, H.T. (1994). Lasing mechanism in a capillary discharge. Phys. Lett. A 193, 183187.CrossRefGoogle Scholar
Kunze, H.-J., Ellwi, S.S. & Andreic, Z. (2005). Lasing in an ablative capillary discharge with structured return conductor. Phys. Lett. A 334, 3741.CrossRefGoogle Scholar
Kunze, H.-J., Ellwi, S.S. & Andreic, Z. (2006). X-ray lasing in ablative capillary discharges. Czechosl. J. Phys. 56, B280B290.CrossRefGoogle Scholar
Lee, K., Kim, J.H. & Kim, D. (2002). Analytical study of the dynamics of capillary discharge plasmas for recombination X-ray lasers using H-like ions. Phys. Plasmas 9, 47494755.CrossRefGoogle Scholar
London, R.A. (1988). Beam optics of exploding foil plasma X-ray lasers. Phys. Fluids 31, 184192.CrossRefGoogle Scholar
Luther, B.M., Wang, Y., Berrill, M., Alessi, D., Marconi, M.C., Larotonda, M.A. & Rocca, J.J. (2005). Highly ionized Ar plasma wave guides generated by a fast capillary discharge. IEEE Trans. Plasma Sci. 33, 582583.CrossRefGoogle Scholar
Milani, M., Ferraro, L., Causa, F. & Batan, D. (2007). Lasing properties and nonlinearities of dyes under high power pumping. Laser Part. Beams 25, 557566.CrossRefGoogle Scholar
Nickles, P.V., Janulewicz, K.A., Rocca, J.J., Bortolotto, F., Lucianetti, A. & Wandner, W. (2001). Hybridly pumped collisional soft X-ray laser in Ne-like sulphur. J. Phys. IV 11, 9398.Google Scholar
Orlov, N.Y., Gus'kov, S.Y., Pikuz, S.A., Rozanov, V.B., Shelkovenko, T.A., Zmitrenko, N.V. & Hammer, D.A. (2007). Theoretical and experimental studies of the radiative properties of hot dense matter for optimizing soft X-ray sources. Laser Part. Beams 25, 415423.CrossRefGoogle Scholar
Rahman, A., Hammarsten, E.C., Sakadzic, S., Rocca, J.J. & Wyart, J.F. (2003). Identification of n = 4, Δn = 0 transitions in the spectra of nickel-like cadmium ions from a capillary discharge plasma column. Phys. Scripta 67, 414419.CrossRefGoogle Scholar
Ritucci, A., Tomassetti, G., Reale, A., Palladino, L., Reale, L., Flora, F., Mezi, L., Kukhlevsky, S.V., Faenov, A. & Pikuz, T. (2004). Investigation of a highly saturated soft X-ray amplification in a capillary discharge plasma wave guides. Appl. Phys. 78, 965969.CrossRefGoogle Scholar
Rocca, J.J., Cortazar, O.D., Szapiro, B., Floyd, K. & Tomasel, F.G. (1993). Fast-discharge excitation of hot capillary plasmas for soft-x-ray amplifiers. Phys. Rev. E 47, 12991304.CrossRefGoogle ScholarPubMed
Rocca, J.J., Shlyaptsev, V., Tomasel, F.G., Cortazar, O.D., Hartshorn, D. & Chilla, J.L.A. (1994). Demonstration of a discharge pumped table-top soft X-ray laser. Phys. Rev. Lett. 73, 21922195.CrossRefGoogle ScholarPubMed
Rocca, J.J., Clark, D.P., Chilla, J.L.A. & Shlyaptsev, V.N. (1996a). Energy extraction and achievement of the saturation limit in a discharge-pumped table-top soft X-ray amplifier. Phys. Rev. Lett. 77, 14761479.CrossRefGoogle Scholar
Rocca, J.J., Clark, D.P., Tomasel, F.G., Shlyaptsev, V.N., Chilla, J.L.A., Benware, B., Moreno, C., Burd, D. & Gonzales, J.J. (1996b). Advances in discharge pumped soft X-ray lasers: From the observation of gain to achievement of the saturation limit and energy extraction. X-ray Lasers 1996, Inst. Phys. Confer. Ser. 151, 176183.Google Scholar
Rocca, J.J., Tomasel, F.G., Moreno, C.H., Shlyaptsev, V.N., Marconi, M.C., Benware, B.R., Gonzales, J.J., Chilla, J.L.A. & Macchietto, C.D. (1997). Progress in the development of table-top discharge-pumped soft X-ray lasers. J. Phys. IV 7, 353363.Google Scholar
Rocca, J.J. (1999). Table-top soft X-ray lasers. Rev. Sci. Instrum. 70, 37993827.CrossRefGoogle Scholar
Ruhl, F., Aschke, A. & Kunze, H.-J. (1997). Selective population of the n = 3 level of hydrogen-like carbon in two colliding laser-produced plasmas. Phys. Lett. A 225, 107112.CrossRefGoogle Scholar
Sasaki, T., Yano, Y., Nakajima, M., Kawamura, T. & Horioka, K. (2006). Warm-dense-matter studies using pulse-powered wire discharges in water. Laser Part. Beams 24, 371380.CrossRefGoogle Scholar
Schmidt, J., Kolacek, K., Frolov, O., Prukner, V. & Straus, J. (2006). Comparison of calculated and experimental results of CAPEX-U device. Czechosl. J. Phys. 56, B371B376.CrossRefGoogle Scholar
Shin, H.J., Kim, D.O. & Lee, T.N. (1994). Soft-X-ray amplification in a capillary discharge. Phys. Rev. E 50, 13761381.CrossRefGoogle Scholar
Shuker, M., Ben-Kish, A., Fisher, A. & Ron, A. (2006). Titanium plasma source for capillary discharge extreme ultraviolet lasers. Appl. Phys. Lett. 88, 026413.CrossRefGoogle Scholar
Steden, C. & Kunze, H.-J. (1990). Observation of gain at 18.22 nm in the carbon plasma of a capillary discharge. Phys. Lett. A 151, 534537.CrossRefGoogle Scholar
Straus, J., Kolacek, K., Bohacek, V., Frolov, O., Prukner, V., Ripa, M., Sember, V., Schmidt, J., Vrba, P. & Klir, D. (2004). Interactive system for the interpretation of atomic spectra. Czechosl. J. Phys. 54, C314C320.CrossRefGoogle Scholar
Straus, J., Kolacek, K., Schmidt, J., Frolov, O. & Prukner, V. (2007). Computer generated spectra indicating parameters of capillary-discharge-plasma suitable to amplify radiation of Balmer-alpha transition of H-like N (13.4 nm). Proc. 28th Int. Conf. on Phenomena in Ionized Gases, Prague, CR, July 15–20, 12841285.Google Scholar
Tomasel, F.G., Shlyaptsev, V.N. & Rocca, J.J. (1996). Enhanced beam characteristics of a discharge-pumped soft-x-ray amplifier by an axial magnetic field. Phys. Rev. A 54, 24742478.CrossRefGoogle ScholarPubMed
Tomasel, F.G., Rocca, J.J., Shlyaptsev, V.N. & Macchietto, C.D. (1997). Lasing at 60.8 nm in Ne-like sulfur ions in ablated material excited by a capillary discharge. Phys. Rev. A 55, 14371440.CrossRefGoogle Scholar
Tomassetti, G., Ritucci, A., Reale, A., Palladino, L., Reale, R., Kukhlevsky, S.V., Flora, F., Mezi, L., Kaiser, J., Faenov, A. & Pikuz, T. (2002). Capillary discharge soft X-ray lasing in Ne-like Ar pumped by long current pulses. Eur. Phys. J. D 19, 7377.CrossRefGoogle Scholar
Tomassetti, G., Ritucci, A., Reale, A., Palladino, L., Reale, L., Kukhlevsky, S.V., Flora, F., Mezi, L., Faenov, A., Pikuz, T. & Gaudieri, A. (2004). Toward a full optimization of a highly saturated soft-X-ray laser beam produced in extremely long capillary discharge amplifiers. Opt. Commun. 231, 403411.CrossRefGoogle Scholar
Vrba, P., Vrbova, M., Bobrova, N.A. & Sasorov, P.V. (2005a). Simulation study of nitrogen soft X-ray capillary discharge laser. Proc. 9th IC X-ray Lasers, Beijing, China, May 24–28, 2004, X-ray Lasers 2004, Inst. of Physics Conf. Series 186, 175178.Google Scholar
Vrba, P., Vrbova, M., Bobrova, N.A. & Sasorov, P.V. (2005b). Modelling of a nitrogen X-ray laser pumped by capillary discharge. Cent. Eur. J. Phys. 3, 564580.Google Scholar
Vrba, P. & Vrbova, M. (2006). Population inversion during pinch decay in nitrogen capillary discharge. Czechosl. J. Phys. 56, B425B429.CrossRefGoogle Scholar
Wong, C.S., Woo, H.J. & Yap, S.L. (2007). A low energy tunable pulsed X-ray source based on the pseudospark electron beam. Laser Part. Beams 25, 497502.CrossRefGoogle Scholar
Wagner, T., Eberl, E. & Hoffmann, D.H.H. (1996a). Evidence for recombination XUV lasing at 52.0 nm and 49.8 nm in a fast, compact Z-pinch discharge. Laser Part. Beams 14, 679684.CrossRefGoogle Scholar
Wagner, T., Eberl, E., Frank, K., Hartmann, W., Hoffmann, D.H.H. & Tkotz, R. (1996b). XUV amplification in a recombining z-pinch plasma. Phys. Rev. Lett. 76, 31243127.CrossRefGoogle Scholar
Wang, Y., Luther, B.M., Berrill, M., Marconi, M., Brizuela, F., Rocca, J.J. & Shlyaptsev, V.N. (2005). Capillary discharge-driven metal vapor plasma waveguides. Phys. Rev. E 72, 061501.CrossRefGoogle ScholarPubMed
Wyndham, E.S., Favre, M. & Aliaga-Rossel, R. (2006). The formation of metallic plasma in transient capillary discharges at high current. Plasma Sour. Sci. & Techn. 15, 538545.CrossRefGoogle Scholar
Zou, X.B., Liu, R., Zeng, N.G., Han, M., Yuan, J.Q., Wang, X.X. & Zhang, G. X. (2006). A pulsed power generator for x-pinch experiments. Laser Part. Beams 24, 503509.CrossRefGoogle Scholar