Skip to main content Accessibility help

Wakefield and stopping power of a hydrogen ion beam pulse with low drift velocity in hydrogen plasmas

  • Ling-Yu Zhang (a1) (a2) (a3), Xiao-Ying Zhao (a1) (a2), Xin Qi (a1) (a2), Guo-Qing Xiao (a1) (a2), Wen-Shan Duan (a1) (a2) and Lei Yang (a1) (a2) (a4)...


A two-dimensional particle-in-cell (PIC) simulation is carried out to study the wakefield and stopping power for a hydrogen ion beam pulse with low drift velocity propagation in hydrogen plasmas. The plasma is assumed to be collisionless, uniform, non-magnetized, and in a steady state. Both the pulse ions and plasma particles are treated by the PIC method. The effects of the beam density on the wakefield and stopping power are then obtained and discussed. It is found that as the beam densities increase, the oscillation wakefield induced by the beam become stronger. Besides, the first oscillation wakefield behind the bunch is particularly stronger than others. Moreover, it is found that the stationary stopping power increases linearly with the increase of the beam density in the linear/semilinear region.


Corresponding author

Address correspondence and reprint requests to: Xin Qi and Lei Yang, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou 730070, China. E-mail:,


Hide All
Boine-Frankenheim, O. & D'avanzo, J. (1996). Stopping power of ions in a strongly magnetized plasma. Phys. Plasmas 3, 792799.
Boine-Frankenheim, O., Gjonaj, E., Petrov, F., Yaman, F., Weiland, T. & Rumolo, G. (2012). Energy loss and longitudinal wakefield of relativistic short proton bunches in electron clouds. Phys. Rev. ST Accel. Beams 15, 054402(1)054402(7).
Butler, S.T. & Buckingham, M.J. (1962). Energy loss of a fast ion in a plasma. Phys. Rev. 126, 14.
Chen, P., Dawson, J.M., Huff, R.W. & Katsouleas, T. (1985). Acceleration of electrons by the interaction of a bunched electron-beam with a plasma. Phys. Rev. L 54, 693696.
D'avanzo, J., Hofmann, I. & Lontano, M. (1998). Charge dependence of nonlinear stopping power. Nucl. Instrum. Methods A 415, 632636.
Deutsch, C. & Fromy, P. (1995). Correlated ion stopping in a dense classical plasma. Phys. Rev. E 51, 632641.
Dietrich, K.G., Hoffmann, D.H.H., Boggasch, E., Jacoby, J., Wahl, H., Elfers, M., Haas, C.R., Dubenkov, V.P. & Golubev, A.A. (1992). Charge state of fast heavy-ions in a hydrogen plasma. Phys. Rev. L 69, 36233626.
Franchetti, G., Hofmann, I., Fischer, W. & Zimmermann, F. (2009). Incoherent effect of space charge and electron cloud. Phys. Rev. ST Accel. Beams 12, 124401(1)124401(18).
Goldman, S.R. & Hofmann, I. (1990). Electron cooling of high-Z ion-beams parallel to a guide magnetic-field. IEEE Trans. Plasma Sci. 18, 789796.
Gryzinski, M. (1957). Stopping power of a medium for heavy charged particles. Phys. Rev. 107, 14711475.
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.
Hoffmann, D.H.H., Jacoby, J., Laux, W., Demagisteis, M., Boggasch, E., Spiller, P., Stockl, C., Tauschwitz, A., Weyrich, K., Chabot, M. & Gardes, D. (1994). Energy-loss of fast heavy-ions in plasmas. Nucl. Instrum. Methods B 90, 19.
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2009). Dynamic polarization and energy dissipation for charged particles moving in magnetized two-component plasmas. Phys. Rev. E 79, 016405(1)016405(7).
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2010). Wake effect and stopping power for a charged ion moving in magnetized two-component plasmas: Two-dimensional particle-in-cell simulation. Phys. Rev. E 82, 026404(1)026404(8).
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2012). Time evolution and energy deposition for ion clusters injected into magnetized two-component plasmas. Phys. Rev. E 85, 016402(1)016402(2).
Hu, Z.-H., Song, Y.-H., Zhao, Y.-T. & Wang, Y.-N. (2013). Modulation of continuous ion beams with low drift velocity by induced wakefield in background plasmas. Laser Part. Beams 31, 135140.
Jacoby, J., Hoffmann, D.H.H., Laux, W., Muller, R.W., Wahl, H., Weyrich, K., Boggasch, E., Heimrich, B., Stockl, C., Wetzler, H. & Miyamoto, S. (1995). Stopping of heavy-ions in a hydrogen plasma. Phys. Rev. L 74, 15501553.
Kaganovich, I.D., Startsev, E.A. & Davidson, C.D. (2004). Nonlinear plasma waves excitation by intense ion beams in background plasma. Phys. Plasmas 11, 35463552.
Keinigs, R. & Jones, M.E. (1987). Two-dimensional dynamics of the plasma wakefield accelerator. Phys. Fluids B 30, 252263.
Krushelnick, K., Clark, E.L., Allott, R., Beg, F.N., Danson, C.N., Machacek, A., Malka, V., Najmudin, Z., Neely, D., Norreys, P.A., Salvati, M.R., Santala, M.I.K., Tatarakis, M., Watts, I., Zepf, M. & Dangor, A.E. (2000). Ultrahigh-intensity laser-produced plasmas as a compact heavy ion injection source. IEEE Trans. Plasma Sci. 28, 11841189.
Nieter, C. & Cary, J.R. (2004). VORPAL: A versatile plasma simulation code. J. Comput. Phys. 196, 448473.
Oguri, Y., Hasegawa, J., Kaneko, J., Ogawa, M. & Horioka, K. (2005). Stopping of low-energy highly charged ions in dense plasmas. Nucl. Instrum. Methods A 544, 7683.
Peter, T. & Meyertervehn, J. (1991). Energy-loss of heavy-ions in dense-plasma. 1. Linear and nonlinear Vlasov theory for the stopping power. Phys. Rev. A 43, 19982014.
Renk, T.J., Mann, G.A. & Torres, G.A. (2008). Performance of a pulsed ion beam with a renewable cryogenically cooled ion source. Laser Part. Beams 26, 545554.
Sorensen, A.H. & Bonderup, E. (1983). Electron cooling. Nucl. Instrum. Methods Phys. Res. 215, 2754.
Takahashi, T., Kato, T., Kondoh, Y. & Iwasawa, N. (2004). Power deposition by neutral beam injected fast ions in field-reversed configurations. Phys. Plasmas 11, 38013807.
Ter-Avetisyan, S., Schnuerer, M., Polster, R., Nickles, P.V. & Sandner, W. (2008). First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part. Beams 26, 637642.
Thompson, E., Stork, D. & Deesch, H.P.L. (1993). The use of neutral beam heating to produce high-performance fusion plasmas, including the injection of tritium beams into the joint european torus (JET). Phys. Fluids B 5, 24682480.
Zhao, Y., Hu, Z., Cheng, R., Wang, Y., Peng, H., Golubev, A., Zhang, X., Lu, X., Zhang, D., Zhou, X., Wang, X., Xu, G., Ren, J., Li, Y., Lei, Y., Sun, Y., Zhao, J., Wang, T., Wang, Y. & Xiao, G. (2012). Trends in heavy ion interaction with plasma. Laser Part. Beams 30, 679706.
Zwicknagel, G. & Deutsch, C. (1997). Correlated ion stopping in plasmas. Phys. Rev. E 56, 970987.
Zwicknagel, G., Reinhard, P.G., Seele, C. & Toepffer, C. (1996 a). Energy loss of heavy ions in strongly coupled plasmas. Fusion Eng. Des. 32–33, 523528.
Zwicknagel, G., Toepffer, C. & Reinhard, P.G. (1996 b). Molecular dynamic simulations of ions in electron plasmas at strong coupling. Hyperfine Interact. 99, 285291.
Zwicknagel, G., Toepffer, C. & Reinhard, P.G. (1999). Stopping of heavy ions in plasmas at strong coupling. Phys. Rep. 309, 117208.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed