Skip to main content Accessibility help
×
Home

Vlasov–Maxwell simulations of backward Raman amplification of seed pulses in plasmas

  • Magdi Shoucri (a1) and Bedros Afeyan (a2)

Abstract

We study the problem of the amplification of an ultra-short seed pulse via stimulated Raman backscattering (SRB) from a long pump pulse (assumed to have an envelope with a constant amplitude), in an underdense plasma. The SRB interaction couples the pump light wave to a daughter light seed wave propagating in the opposite direction, scattered off an electron plasma wave. In recent numerical simulations, it has been observed that besides stimulated Raman backward scattering (SRBS) and stimulated Raman forward scattering, other high-frequency kinetic instabilities can occur when modified distribution functions exist during the evolution of the system. In particular, we showed the prominent role played by kinetic electrostatic electron nonlinear (KEEN) waves (Afeyan et al., 2004). We continue this work by applying a relativistic Vlasov–Maxwell code to study stimulated KEEN wave scattering (SKEENS) and its role in the SRBS short pulse amplification processes. An analysis of the full spectrum of waves participating in the amplification processes is presented. The absence of spurious noise in grid-based Vlasov codes allows us to follow the evolution of the system with a kinetic (collisionless) description. This affords us a glimpse at the intricate phase-space structures such as trapped particle orbits, which coexist and interact nonlinearly in the electron distribution function.

Copyright

Corresponding author

Address correspondence and reprint requests to: M. Shoucri, Institut de recherche d'Hydro-Québec (IREQ), Varennes, Québec J3X1S1, Canada. E-mail: shoucri.magdi@ireq.ca

References

Hide All
Afeyan, B., Casas, F., Crouseilles, N., Dodhy, A., Faou, E., Mehrenberger, M. & Sonnendrucker, E. (2014). Simulations of kinetic electrostatic electron nonlinear (KEEN) waves with variable velocity resolution grids and high-order time-splitting. Eur. Phys. J. D 68, 295/1–21.
Afeyan, B., Chou, A.E., Matte, J.P., Town, R.P.J. & Kruer, W.J. (1998). Kinetic theory of electron-plasma and ion acoustic waves in nonuniformly heated laser plasmas. Phys. Rev. Lett. 80, 2322.
Afeyan, B., Won, K., Savchenko, V., Johnston, T., Ghizzo, A. & Bertrand, P. (2004). Kinetic electrostatic electron nonlinear (KEEN) waves and their interactions driven by the ponderomotive force of crossing laser beams. In Proc. Int. Fusion Sciences and Applications (Hammel, B., Meyerhofer, D., Meyer-ter-Vehn, J. and Azechi, H., Eds.), p. 213. La Grange Park, IL: American Nuclear Society. See arXiv:1210.8105.
Benisti, D., Yampolsky, N.A. & Fisch, N.J. (2012). Comparison between nonlinear kinetic modelings of stimulated Raman scattering using envelope equations. Phys. Plasmas 19, 013110.
Bers, A., Shkarofsky, I. & Shoucri, M. (2009). Relativistic Landau damping of electron plasma waves in stimulated Raman scattering. Phys. Plasmas 16, 022104/1–6.
Drake, J.F., Kaw, P.K., Lee, Y.C., Schmidt, G., Liu, C.S. & Rosenbluth, M.N. (1974). Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17, 778.
Fisch, N.J. & Malkin, M.V. (2003). Generation of ultrahigh intensity laser pulses. Phys. Plasmas 10, 2056.
Forslund, D.W., Kindel, J.M. & Lindman, E.L. (1975). Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluids 18, 1002.
Ghizzo, A., Bertrand, P., Shoucri, M., Feix, M., Johnston, T.W., Fijalkow, E. & Feix, M. (1990). A vlasov code for the numerical solution of stimulated Raman scattering. J. Comput. Phys. 90, 431457.
Kruer, W. (1988) The Physics of Laser-Plasma Interaction. Boulder, CO: Addison-Wesley.
Lancia, L., Marquès, J.R., Nakatsutsumi, M., Riconda, C., Weber, S., Hüller, S., Mancic, A., Antici, P., Tikhonchuk, V.T., Heron, A., Audebert, P. & Fuchs, J. (2010). Experimental evidence of short light amplification using strong-coupling stimulated Brillouin scattering in the pump depletion regime. Phys. Rev. Lett. 104, 025001/1–4.
Lehmann, G., Schluck, F. & Spatschek, K.H. (2012). Regions of Brillouin seed pulse growth in relativistic laser–plasma interaction. Phys. Plasmas 19, 093120.
Lehmann, G. & Spatschek, K.H. (2013). Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regimes. Phys. Plasmas 20, 073112/1–10.
Lehmann, G. & Spatschek, K.H. (2014). Non-filamental ultra-intense and ultra-short pulse fronts in three-dimensional Raman seed amplification. Phys. Plasmas 21, 053101/1–14.
Lehmann, G., Spatschek, K.H. & Sewell, G. (2013). Pulse shaping during Raman-seed amplification for short laser pulses. Phys. Rev. E 87, 063107/1–9.
Malkin, V.M. & Fisch, N.J. (2005). Manipulating ultra-intense laser pulses in plasmas. Phys. Plasmas 12, 044507.
Malkin, V.M., Shvets, G. & Fisch, N.J. (1999). Fast compression of laser beams to highly overcritical powers. Phys. Rev. Lett. 82, 44484451.
Malkin, V.M., Toroker, Z. & Fisch, N.J. (2014). Saturation of the leading spike growth in the backward Raman amplifiers. Phys. Plasmas 21, 093112/1–5.
Max, C.E., Arons, J. & Langdon, A.B. (1974). Self-modulation and sel-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209212.
Mehrenberger, M., Steiner, C., Maaradi, L., Crouseilles, N., Sonnendrücker, E. & Afeyan, B. (2013). Vlasov on GPU (VOG Project). ESAIM Proc. 43, 37.
Mourou, G.A., Fisch, N., Malkin, V., Toroker, Z., Khazanov, E., Sergeev, A., Tajima, T. & LeGarrec, B. (2012). Exawatt–Zetawatt pulse generation and applications. Opt. Commun. 285, 720.
Ren, J., Cheng, W., Li, S. & Suckewer, S. (2007). A new method for generating ultraintense and ultrashort laser pulses. Nat. Phys. 3, 732736.
Riconda, C., Weber, S., Lancia, L., Marquès, J-R., Mourou, G.A. & Fuchs, J. (2013). Spectral characteristics of ultra-short laser pulses in plasma amplifiers. Phys. Plasmas 20, 083115.
Shoucri, M. (2008 a). Numerical simulation of wake-field acceleration using an Eulerian Vlasov code. Commun. Comput. Phys. 4, 703718.
Shoucri, M. (2008 b). Numerical Solution of Hyperbolic Differential Equations. New York: Nova Science Publishers, Inc.
Shoucri, M. & Afeyan, B. (2014). Numerical simulation of Raman Scattering with a relativistic Vlasov–Maxwell code: A cascade of nonstationary nonlinear kinetic interactions. In Computational and Numerical Simulations (Awrejcewicz, J., Ed.), pp. 251282. Croatia: InTECH Publ.
Shoucri, M., Gerhauser, H. & Finken, K.H. (2003). Integration of the Vlasov equation along characteristics in one and two dimensions. Comput. Phys. Commun. 154, 6575.
Shoucri, M., Matte, J.P. & Vidal, F. (2015). Relativistic Eulerian Vlasov simulations of the amplification of seed pulses by Brillouin backscattering in plasmas. Phys. Plasmas 22, 053191.
Sircombe, N.J., Arber, T.D. & Dendy, R.O. (2006). Aspects of electron acoustic wave physics in laser backscatter from plasmas. Plasma Phys. Control. Fusion 48, 11411153.
Spatschek, K.H. (1976). Parametrische instabilitäten in plasmen. Fortschr. Phys. 24, 687729.
Strozzi, D.J., Williams, E.A., Langdon, A.B. & Bers, A. (2007). Kinetic enhancement of Raman backscatter, and electron acoustic Thomson scatter. Phys. Plasmas 14, 013104/1–13.
Strozzi, D.J., Williams, E.A., Langdon, A.B., Bers, A. & Brunner, S. (2010). Eulerian–Lagrangian kinetic simulations of laser–plasma interactions. In Eulerian Codes for the Numerical Solution of the Kinetic Equations of Plasmas (Shoucri, M., Ed.), pp. 89122. New York: Nova Science Publishers, ISBN 978 1 61668 413 6.
Toroker, Z., Malkin, V.M. & Fisch, N. (2014). Backward Raman amplification in the Langmuir wavebreaking regime. Phys. Plasmas 21, 113110/1–10.
Trines, R.M.G.M., Fiuza, F., Bingham, R., Fonseca, R.A., Silva, L.O., Cairns, R.A. & Norreys, P.A. (2011 a). Production of picosecond, kilojoule, and petawatt laser pulses via Raman amplification of nanosecond pulses. Phys. Rev. Lett. 107, 105002.
Trines, R.M.G.M., Fiuza, F., Bingham, R., Fonseca, R.A., Silva, L.O., Cairns, R.A. & Norreys, P.A. (2011 b). Simulations of efficient Raman amplification into the multipetawatt regime. Nat. Phys. 7, 8792.
Valentini, F., O'Neil, T.M. & Dubin, D.H.E. (2006). Excitation of nonlinear electron acoustic waves. Phys. Plasmas 13, 052303/1–7.
Vu, H.X., DuBois, D.F. & Bezzerides, B. (2007). Inflation threshold: A nonlinear trapping-induxed threshold for the rapid onset of stimulated Raman scattering form a single laser speckle. Phys. Plasmas 14, 012702.
Wang, T.-L., Clark, D.S., Strozzi, D.J., Wilks, S.C., Martins, S.F. & Kirkwood, R.K. (2010). Particle-in-cell simulations of kinetic effects in plasma based backward Raman amplification in underdense plasmas. Phys. Plasmas 17, 023109/1–9.
Yin, L., Daughton, W., Albright, B.J., Bowers, K.J., Montgomery, D.S., Kline, J.L., Fernandez, J.C. & Roper, Q. (2006). Nonlinear backward stimulated Raman scattering from electron beam acoustic modes in the kinetic regime. Phys. Plasmas 13, 072701.

Keywords

Related content

Powered by UNSILO

Vlasov–Maxwell simulations of backward Raman amplification of seed pulses in plasmas

  • Magdi Shoucri (a1) and Bedros Afeyan (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.