Skip to main content Accessibility help

Trends in heavy ion interaction with plasma

  • Yongtao Zhao (a1), Zhanghu Hu (a2), Rui Cheng (a1), Yuyu Wang (a1), Haibo Peng (a1) (a3), Alexander Golubev (a4), Xiaoan Zhang (a1) (a5), Xia Lu (a3), Dacheng Zhang (a1), Xianming Zhou (a1), Xing Wang (a1) (a6), Ge Xu (a1), Jieru Ren (a1), Yongfeng Li (a1), Yu Lei (a1), Yuanbo Sun (a1), Jiangtao Zhao (a3), Tieshan Wang (a3), Younian Wang (a2) and Guoqing Xiao (a1)...


In this work, we review current trends in China to investigate beam plasma interaction phenomena. Recent progresses in China on low energy heavy ions and plasma interaction, ion beam-plasma interactions under the influences of magnetic fields, high energy heavy ion radiography through marginal range method, energy deposition of highly charged ions on surfaces and Raman spectroscopy of surfaces after irradiation of highly charged ions are presented.


Corresponding author

Address correspondence and reprint requests to: Jieru Ren, Institute of Modern Physics, CAS, Nanchang Road 509, 730000 Lanzhou, China. E-mail:


Hide All
Adonin, A., Turtikov, V., Ulrich, A., Jacoby, J., Hoffmann, D.H.H. & Wieser, J. (2009). Intense heavy ion beams as a pumping source for short wavelength lasers. Laser Part. Beams 27, 379391.
Aumayr, F. & Winter, H.P. (2007). Slow Heavy-Particle Induced Electron Emission. New York: Springer, 80112.
Aumayr, F. & Winter, H.P. (2003). Slow highly charged ions -a new tool for surface nanostructuring? e-J. Surf. Sci. Nanotech. 1, 171174.
Aumayr, F., El-Said, A.S. & Meissl, W. (2008). Nano-sized surface modifications induced by the impact of slow highly charged ions—A first review. Nucl. Instr. and Meth. B 266, 2729.
An, B., Fukuyama, S., Yokogawa, K. & Yoshimura, M. (2002). Evolution of Ar+-damaged graphite surface during annealing as investigated by scanning probe microscopy. J. Appl. Phys. 92, 2317.
Arnau, A., Aumayr, F., Echenique, P.M., Grether, M, Heiland, W., Limburg, J., Morgenstern, R., Roncin, P., Schippers, S., Schuch, R., Stolterfoht, N., Varga, P., Zouros, T.J.M. & Winter, H.P. (1997). Interaction of slow multicharged ions with solid surfaces. Surf. Sci. Rep. 27, 113239.
Arista, N.R. & Bringa, E.M. (1997). Interaction of ion clusters with fusion plasmas: Scaling laws. Phys. Rev. A 55, 28732881.
Aumayr, F., Elsaid, A. & Meissl, W. (2008). Nano-sized surface modifications induced by the impact of slow highly charged ions—A first review. Nucl. Instr. and Meth. B 266, 27292735.
Bringa, E.M. & Arista, N.R. (1995). Collective effects in the energy loss of ion beams in fusion plasmas. Phys. Rev. E 52, 30103014.
Butler, S.T. & Buckingham, M.J. (1962). Energy loss of a fast ion in a plasma. Phys. Rev. 126, 14.
Baragiola, R.A. & Dukes, C.A. (1996). Plasmon-assisted electron emission from Al and Mg surfaces by slow ions. Phys. Rev. Lett. 76, 25472550.
Bock, R.M., Hoffmann, D.H.H., Hofmann, I. & Logan, G. (2005). Inertial Confinement Fusion: Heavy Ions. Landolt–Börnstein. In Energy Technologies: Nuclear Energy. Heidelberg: Springer-Verlag, 529554.
Benton, E.V., Henke, R.P. & Tobias, C.A. (1973). Heavy-Particle Radiography. Sci. 182, 474476.
Biersack, J.P. & Haggmark, L. (1980). A Monte Carto computer program for the transport of energetic ions in amorphous targets. Nucl. Instum. Meth. 174, 257269.
Clarke, R.J., Simpson, P.T., Kar, S., Green, J.S., Beller, C., Carroll, D.C., Dromey, B., Kneip, S., Markey, K., Mckenna, P., Murphy, W., Nagel, S., Willingale, L. & Zepf, M. (2008). Nuclear activation as a hih dynamic range diagnostic of laser-plasma interactions. Nucl. Instrum. Meth. Phys. Res. A 585, 117120.
COUNCIL REGULATION (EC) No. 975/98 on denominations and technical specifications of euro coins intended for circulation (1998), Official Journal of the European Communities 139, 68.
Chetty, I.J. & Charland, P.M. (2002). Investigation of Kodak extended dose range (EDR) film for megavoltage photon beam dosimetry. Phys. Med. Biol. 47, 36293641.
Cookson, J.A. (1974). Radiography with Protons. Naturwissenschaften 61, 184191.
Chen, P., Dawson, J.M., Huff, R.W. & Katsouleas, T. (1985), Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma. Phys. Rev. Lett. 54, 693696.
Cereceda, C., Deutsch, C., Peretti, M.De, Sabatier, M. & Nersisyan, H.B. (2000). Dielectric response function and stopping power of dense magnetized plasma. Phys. Plasmas 7, 28842893.
Cereceda, C., Peretti, M.De & Deutsch, C. (2005). Stopping power for arbitrary angle between test particle velocity and magnetic field. Phys. Plasmas 12, 022102.
Compagnini, G., Giannazzo, F., Sonde, S., Raineri, V. & Rimini, E. (2009). Ion irradiation and defect formation in single layer graphene. Carbon 47, 32013207.
Dresselhaus, M.S., Dresselhaus, G. & Hofmann, M. (2008). Raman spectroscopy as a probe of graphene and carbon nanotubes. Phil. Trans. R. Soc. A 366, 231236.
D'avanzo, J., Lontano, M. & Bortignon, P.F. (1992). Fast-ion energy deposition in dense plasmas with two-ion correlation effects. Phys. Rev. A 45, 61266129.
D'avanzo, J., Hofmann, I. & Lontano, M. (1998). Charge dependence of nonlinear stopping power. Nucl. Instr. Meth. A 415, 632636.
Deutsch, C. (1986). Inertial confinement fusion driven by intense ion beams. Ann. Phys. (Paris) 11, 1111.
Deutsch, C. (1990). Interaction of ion cluster beams with cold matter and dense plasmas, Laser Part. Beams 8, 541553.
Deutsch, C. & Fromy, P. (1995). Correlated ion stopping in a dense classical plasma. Phys. Rev. E 51, 632641.
Drake, R.P. (2006). High-Energy-Density Physics. Berlin: Springer-Verlag.
Dietrich, K.-G., Hoffmann, D.H.H. & Boggasch, E. (1992). Charge state of fast heavy ions in a hydrogen plasma. Phys. Rev. Lett. 69, 36233626.
Drozdovskiy, A.A., Golubev, A.A., Novozhilov, Y.B., Sasorov, P.V., Savin, S.M., Yanenko, V.V. & Bochkov, V.D. (2011). Plasma lens for transformation the ITEP heavy ion accelerator with TDI-pseudosparks. Fusion Engineering (SOFE), 2011 IEEE/NPSS 24th Symposium, 1–4.
Delaunay, M., Fehrringer, M., Geller, R., Hitz, D., Varga, P. & Winter, H. (1987). Electron emission from a metal surface bombarded by slow highly charged ions. Phys. Rev. B 35, 42324235.
Fabrikant, J., Holley, W.R., Mcfarland, E.W. & Tobias, C.A. (1982). Heavy-ion radiography and heavy-ion computed tomography. 3rd international symposium of radiation protection-advances in theory and practice, LBL-14001, 1–6.
Ferguson, A.T.G., Cookson, J.A. & Armitage, B.H. (1972). Proton radiography. Non-Destructive Testing 5, 225228.
Facsko, S., Heller, R., El-Said, A.S., Meissl, W. & Aumayr, F. (2009). Surface nanostructures by single highly charged ions. J. Phys.: Condens. Matter 21, 224012.
Ferrari, A. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 4757.
Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C. & Wirtz, L. (2007). Raman imaging of graphene. Solid State Commun. 143, 4446.
Golubev, A.A., Demidov, V.S., Demidova, E.V., Dudin, S.V., Kantsyrev, A.V., Kolesnikov, A.A., Mintsev, V.B., Smirnov, G.N., Turtikov, V.I., Utkin, A.V., Fortov, V.E. & Sharkov, B.Yu. (2010). Diagnostics of fast processes by charged particle beams at TWAC-ITEP accelerator-accumulator facility. Techn. Phys. Lett. 36, 177180.
Golubev, A., Turtikov, V., Fertman, A., Roudskoy, I., Sharkov, B., Geissel, M., Neuner, U., Roth, M., Tauschwitz, A., Wahl, H., Hoffmann, D.H.H., Funk, U., Süß, W. & Jacoby, J. (2001). Experimental investigation of the effective charge state of ions in beam-plasma interaction. Nucl. Instrum. Meth. Phys. Res. A 464, 247252.
Gericke, D.O. & Schlanges, M. (1999), Beam-plasma coupling effects on the stopping power of dense plasmas. Phys. Rev. E 60, 904910.
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005), Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2009 a). Dynamic polarization and energy dissipation for charged particles moving in magnetized two-component plasmas. Phys. Rev. E 79, 016405.
Hu, Z.-H., Song, Y.-H., Wang, G.-Q. & Wang, Y.-N. (2009 b). Nonlinear stopping power for ions moving in magnetized two-component plasmas. Phys. Plasmas 16, 112304.
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2010). Wake effect and stopping power for a charged ion moving in magnetized two-component plasmas: 2D particle-in-cell simulation. Phys. Rev. E 82, 026404.
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2012). Time evolution and energy deposition for ion clusters injected into magnetized two-component plasmas. Phys. Rev. E 85, 016402.
Hunger, H.-J. & Kuechler, L. (1979). Measurements of the electron backscattering coefficient for quantitative EPMA in the energy range of 4 to 40 keV. Phys. Stat. Sol. (a) 56, K45K48.
Hughees, I.G., Burgdoerfer, J., Folkerts, L., Havener, C.C., Overbury, S.H., Robinson, M.T., Zehner, D.M., Zeijlmans Van Emmichoven, P.A. & Meyer, F.W. (1993). Separation of kinetic and potential electron emission arising from slow multicharged ion-surface interactions. Phys. Rev. Lett. 71, 291294.
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardés, D., Bimbot, R. & Fleurier, C. (1990). Energy loss of heavy ions in a plasma target. Phys. Rev. A 42, 23132321.
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 47.
Hayderer, G., Cernusca, S., Schmid, M., Varga, P., Winter, H. & Aumayr, F. (2001). Kinetically assisted potential sputtering of insulators by highly charged ions. Phys. Rev. Lett. 86, 35303533.
Hida, A., Meguro, T., Maeda, K. & Aoyagi, Y. (2003). Analysis of surface modifications on graphite induced by slow highly charged ion impact. Nucl. Instr. and Meth. B 205, 736740.
Ichimaru, S. (1973). Basic Principles of Plasma Physics: A Statistical Approach. Reading: Benjamin.
Jacoby, J., Hoffmann, D.H.H., Laux, W., Müller, R.W., Wahl, H., Weyrich, K., Boggasch, E., Heimrich, B., Stöckl, C. & Wetzler, H. (1995). Stopping of heavy ions in a hydrogen plasma. Phys. Rev. Lett. 74, 15501553.
Kuznetsov, A.P., Bashutin, O.A., Byalkovskii, O.A., Vovchenko, E.D., Korotkov, K.E. & Savjolov, A.S. (2008). Interferometric studies of the electron density dynamics at the periphery of a micropinch discharge, Fizika Plazmy 34, 193198.
Kurz, H., Aumayr, F., Winter, H.P., Schneider, D., Briere, M.A. & Mcdonald, J.W. (1994). Electron emission and image-charge acceleration for the impact of very highly charged ions on clean gold. Phys. Rev. A 49, 4693.
King, N.S.P., Ables, E., Adama, K., Alrick, K.R., Amann, J.F., Balzar, S., Barnes, P.D. Jr., Crow, M.L., Scusing, S.B., Eddleman, J.C., Fife, T.T., Flores, P., Fujino, D., Gallegos, R.A., Gray, N.T., Hartouni, E.P., Hogan, G.E., Holmes, V.H., Jaramillo, S.A., Knudsson, J.N., Londaon, R.K., Lopez, R.R., Mcdonald, T.E., Mcclelland, J.B., Merrill, F.E., Morley, K.B., Morris, C.L., Naivar, F.J., Parker, E.L., Park, H.S., Pazuchanics, P.D., Pillar, C., Riedel, C.M., Sarracino, J.S., Shelley, F.E. Jr., Stacy, H.L., Takala, B.E., Thompson, R., Tucker, H.E., Yates, G.J., Ziock, H.-J. & Zumbro, J.D. (1999). An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instrum. Meth. Phys. Res. A 424, 8491.
Koehler, A.M. (1968). Proton radiography. Sci. l60, 303304.
Keefe, D. (1982). Inertial confinement fusion. Ann. Rev. Nucl. Part. Sci. 32, 391441.
Koguchi, Y., Meguro, T., Hida, A., Takai, H., Maeda, K., Yamamoto, Y. & Aoyagi, Y. (2003). Modification of highly oriented pyrolytic graphite (HOPG) surfaces with highly charged ion (HCI) irradiation. Nucl. Instr. Meth. B 206, 202205.
Liu, J., Neumann, R., Trautmann, C. & Mueller, C. (2001). Tracks of swift heavy ions in graphite studied by scanning tunneling microscopy. Phys. Rev. B 64, 184115.
Lemell, C., Stockl, J., Burgdoerfer, J., Betz, G., Winter, H.P. & Aumayr, F. (1998). Multicharged ion impact on clean Au(111): Suppression of kinetic electron emission in glancing angle scattering. Phys. Rev. Lett. 81, 19651968.
Logan, B.G., Bieniosek, F.M., Celata, C.M., Henestroza, E., Kwan, J.W., Lee, E.P., Leitner, M., Roy, P.K., Seidl, P.A., Eylon, S., Vay, J.-L., Waldron, W.L., Yu, S.S., Barnard, J.J., Callahan, D.A., Cohen, R.H., Friedman, A., Grote, D.P., Kireeff Covo, M., Meier, W.R., Molvik, A.W., Lund, S.M., Davidson, R.C., Efthimion, P.C., Gilson, E.P., Grisham, L.R., Kaganovich, I.D., Qin, H., Startsev, E.A., Rose, D.V., Welch, D.R., Olson, C.L., Kishek, R.A., O'shea, P., Haber, I. & Prost, L.R. (2005). Overview of us heavy ion fusion research. Nucl. Fusion 45, 131.
Mochiji, K., Yamamoto, S., Shimizu, H., Ohtani, S., Seguchi, T. & Kobayashi, N. (1997). Scanning tunneling microscopy and atomic force microscopy study of graphite defects produced by bombarding with highly charged ions. J. Appl. Phys. 82, 6037.
Minniti, R., Ratliff, L.P. & Gillaspy, J.D. (2001). In-situ observation of surface modification induced by highly charged ion bombardment. Phys. Scr. T 92, 22.
Mcdonald, J.W., Schenkel, T., Hamza, A.V. & Schneider, D.H.G. (2005). Material dependence of total electron emission yields following slow highly charged ions impact. Nucl. Instr. Meth. B 240, 829833.
Meguro, T., Hida, A., Koguchi, Y., Miyamoto, S., Yamamoto, Y., Takai, H., Maeda, K. & Aoyagi, Y. (2003). Nanoscale transformation of sp2 to sp3 of graphite by slow highly charged ion irradiation. Nucl. Instr. Meth. B 209, 170174.
Nakamura, N., Terada, M., Nakai, Y., Kanai, Y., Ohtani, S., Komaki, K. & Yamazaki, Y. (2005). SPM observation of nano-dots induced by slow highly charged ions. Nucl. Instr. Meth. B 232, 261265.
Ni, Z., Wang, Y., Yu, T. & Shen, Z. (2008). Raman spectroscopy and imaging of graphene. Nano Res. 1, 273291.
Novotny, R. (2005). Inorganic scintillators—A basic material for instrumentation in physics. Nucl. Instum. Meth. Phys. Res. A 537, 15.
Nersisyan, H.B. (1998). Stopping of charged particles in a magnetized classical plasma. Phys. Rev. E 58, 36863692.
Nersisyan, H.B. & Deutsch, C. (1998). Correlated fast ion stopping in magnetized classical plasma. Phys. Lett. A 246, 325328.
Nersisyan, H.B., Zwicknagel, G. & Toepffer, C. (2003). Energy loss of ions in a magnetized plasma: Conformity between linear response and binary collision treatments. Phys. Rev. E 67, 026411.
Ng, A., Ao, T., Perror, F., Dharma-Wardana, M.W.C. & Foord, M.E. (2005). Idealized slab plasma approach for the study of warm dense matter. Laser Part. Beams 23, 527537.
Pikuz, S.A., Chefonov, O.V., Gasilov, S.V., Komarov, P.S., Ovchinnikov, A.V., Skobelev, I.Y., Ashitkov, S.Y., Agranat, M.V., Zigler, A. & Faenov, A.Y. (2010). Micro-radiography with laser plasma X-ray source operating in air atmosphere. Laser Part. Beams 28, 393397.
Peter, T. & Meyer-Ter-Vehn, J. (1991 a). Energy loss of heavy ions in dense plasma. I. Linear and nonlinear Vlasov theory for the stopping power. Phys. Rev. A 43, 19982014.
Peter, T. & Meyer-Ter-Vehn, J. (1991b). Energy loss of heavy ions in dense plasma. II. Nonequilibrium charge states and stopping powers. Phys. Rev. A 43, 20152030.
Piriz, A.R., López Cela, J.J., Serna Moreno, M.C., Tahir, N.A. & Hoffmann, D.H.H. (2006). Thin plate effects in the Rayleigh-Taylor instability of elastic solids. Laser Part. Beams 24, 275.
Pines, D. & Bohm, D. (1951). A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev. 85, 338353.
Prawer, S., Nugent, K.W., Lifshitz, Y., Lempert, G.D., Grossman, E., Kulik, J., Avigal, I. & Kalish, R. (1996). Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition. Diamond Realted Mater. 5, 433438.
Qayyum, A., Schustereder, W., Mair, C., Scheier, P., Mair, T.D., Cernusca, S., Winter, H. & Aumayr, F. (2003). Electron emission and molecular fragmentation during hydrogen and deuterium ion impact on carbon surfaces. J.Nucl. Mater. 313–316, 670674.
Rostoker, N. & Rosenbluth, M.N. (1960). Test particles in a completely ionized Plasma. Phys. Fluids 3, 114.
Roudskoy, I.V. (1996). General features of highly charged ion generation in laser-produced plasmas. Laser Part. Beams 14, 369384.
Renk, T.J., Mann, G.A. & Torres, G.A. (2008). Performance of a pulsed ion beam with a renewable cryogenically cooled ion source. Laser Part. Beams 26, 545554.
Sigmund, P. (1969). Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184, 383416.
Sharkov, B. (2001). Status of heavy ion fusion. Plasma Phys. Contr. Fusion 43, A229A235.
Schenkel, T., Barnes, A.V., Niedermayr, T.R., Hattass, M., Newman, M.W., Machicoane, G.A., Mcdonald, J.W., Hamza, A.V. & Schneider, D.H. (1999). Deposition of potential energy in solids by slow, highly charged ions. Phys. Rev. Lett. 83, 42734276.
Stockl, J., Suta, T., Ditroi, F., Winter, H.P. & Aumayr, F. (2004). Separation of potential and kinetic electron emission for grazing impact of multiply charged Ar ions on a LiF(001) surface. Phys. Rev. Lett. 93, 263201.
Steward, V.W. & Koehler, A.M. (1973). Proton radiographic detection of strokes, Nat. 245, 3840.
Steward, V.W. & Koehler, A.M. (1973). Proton beam radiography in tumor detection. Sci. 179, 913914.
Shafranova, M.G. & Shafranov, M.D. (1980). Medical ion radiography. Sov.Phys.Usp. 23, 306316.
Spetch, E. (1989), Neutral beam heating of fusion plasmas. Rep. Prog. Phys. 52, 57121.
Steinberg, M. & Ortner, J. (2001). Energy loss of a charged particle in a magnetized quantum plasma. Phys. Rev. E 63, 046401.
Stix, T.H. (1972). Heating of toroidal plasmas by neutral injection. Plasma Phys. 14, 367384.
Samano, E.C., Soto, G., Olivas, A. & Cota, L. (2002). DLC thin films characterized by AES, XPS and EELS. Appl.Surf. Sci. 202, 17.
Schenkel, T., Barnes, A.V., Niedermayr, T.R., Hattass, M., Newman, M.W., Machicoane, G.A., McDonald, J.W., Hamza, A.V. & Schneider, D.H. (1999). Deposition of potential energy in solids by slow, highly charged ions. Phys. Rev. Lett. 83(21), 42734276.
Thompson, E., Stork, D., de Esch, H.P.L. & The Jet Team. (1993). The use of neutral beam heating to produce high performance fusion plasmas, including the injection of tritium beams into the Joint European Torus (JET). Phys. Fluids B 5, 24682480.
Ten, K.A., Evdokov, O.V., Zhogin, I.L., Zubkov, P.I., Kulipanov, G.N., Luk'yanchikov, L.A., Merzhievsky, L.A., Pirogov, B.Ya., Pruuel, E.R., Titov, V.M., Tolochko, B.P. & Sheromov, M.A. (2005). Density distribution reconstruction of the detonation front of high explosives using synchrotron radiation data. Nucl. Instrum. Meth. Phys. Res. A 543, 170174.
Toyokawa, H., Ohgaki, H., Mikado, T. & Yamada, K. (2002). High-energy photon radiography system using laser-Compton scattering for inspection of bulk materials. Rev. Sci. Inst. 73, 33583362.
Tahir, N.A., Piriz, A.R., Wouchun, G., Shutov, A., Lomonosov, I.V., Deutsch, C., Hoffmann, D.H.H. & Fortov, V.E. (2009). High energy density physics and laboratory planetary science using intense heavy ion beams at FAIR facility at Darmstadt: the HEDgeHOB collaboration. Astophys Space Sci. 322, 179188.
Tona, M., Watanabe, H., Takahashi, S., Fujita, Y., Abe, T., Jian, S., Nakamura, N., Yoshiyasu, N., Yamada, C., Sakurai, M. & Ohtani, S. (2007). Observation of HCI-induced nanostructures with a scanning probe microscope. J. Phys: Conf. Ser. 58, 331.
Terada, M., Nakamura, N., Nakai, Y., Kanai, Y., Ohtani, S., Komaki, K. & Yamazaki, Y. (2005). Observation of an HCI-induced nano-dot on an HOPG surface with STM and AFM. Nucl. Instr. Meth. B 235, 452455.
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.
Tahir, N.A., Stöhlker, Th., Shutov, A., Lomonosov, I.V., Fortov, V.E., French, M., Nettelmann, N., Redmer, R., Piriz, A.R., Deutsch, C., Zhao, Y., Zhang, P., Xu, H., Xiao, G. & Zhan, W. (2010). Ultrahigh compression of water using intense heavy ion beams: laboratory planetary physics. New J. Phys. 12, 073022.
Ter-Avetisyan, S., Schnurer, M., Polster, R., Nickles, P.V. & Sandner, W. (2008). First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part. Beams 26, 637642.
Teske, C., Jacoby, J., Senzel, F. & Schweizer, W. (2010). Energy transfer efficiency of a spherical theta pinch, Phys. Plasmas 17, 043501.
Wang, Y.Y., Xiao, G.Q., Zhao, Y.T., Li, D.H., Zhao, D., Xu, Z.F. & Li, F.L. (2009). Surface nanostructure formation by the interaction of slow xenon ions on HOPG surfaces. J. Phys: Conf. Ser. 163, 12082.
Wang, Y.Y., Zhao, Y.T., Qayyum, A., Xiao, G.Q. (2007). Separation of potential and kinetic electron emission from Si and W induced by multiply charged neon and argon ions. Nucl. Instr. Meth. B 265, 474.
Winter, H.P. & Aumayr, F. (1999). Hollow atoms. J. Phys. B: At. Mol. Opt. Phys. 32, 3965.
West, D. & Sherwood, A.C. (1972). Radiography with 160 MeV proton. Nature 239, 157159.
Walter, M., Toepffer, C. & Zwicknagel, G. (1998). Particle-in-cell simulation of the stopping power in the presence of a magnetic field. Hyperf. Interact. 115, 6772.
Walter, M., Toepffer, C. & Zwicknagel, G. (2000). Stopping power in anisotropic, magnetized electron plasmas. Nucl. Instr. Meth. B 168, 347361.
Wang, Q., Song, Y.-H. & Wang, Y.-N. (2000). Influences of finite Larmor radius on wake effects and stopping power for proton moving in magnetized two-component plasma. Phys. Lett. A 34, 46784683.
Wang, T.S., Ding, J.J., Cheng, R., Peng, H.B., Lu, X. & Zhao, Y.T. (2011). Diamond-like carbon produced by highly charged ions impact on highly oriented pyrolytic graphite. Nucl. Instr. Meth. B. 272, 1517.
Wang, T.S., Yang, X.Y., O'Rourke, B.E., Xu, H., Chen, L., Cheng, R., Peng, H.B., Mitsuda, Y. & Yamazaki, Y. (2008). Observation of nano-dots on HOPG surface induced by highly charged Arq + impact. Chin. Phys. Lett. 25, 20202022.
Wang, Y.Y., Zhao, Y.T., Sun, J.Y., Qayyum, A., Liu, J., Wang, Z.G. & Xiao, G.Q. (2011). Electron emission by highly charged neon and xenon ions on fusion-relevant tungsten and graphite surfaces. Nucl. Instr. Meth. B 269, 977980.
Xin, J.P., Zhu, X.P. & Lei, M.K. (2010). Significance of time-of-flight ion energy spectrum on energy deposition into matter by high-intensity pulsed ion beam. Laser Part. Beams 28, 429436.
Xu, H.S. (2009). Status and prospects of HIRFL experiments. Nucl. Phys. Rev. 26, 715.
Zhao, Y.T., Xiao, G.Q., Xu, H.S., Zhao, H.W., Xia, J.W., Jin, G.M., Ma, X.W., Liu, Y, Yang, Z.H., Zhang, P.M., Wang, Y.Y., Li, D.H., Zhao, H.Y., Zhan, W.L., Xu, Z.F., Zhao, D., Li, F.L. & Chen, X.M. (2009). An outlook of heavy ion driven plasma research at IMP-Lanzhou. Nucl. Instr. Meth. B 267, 163166
Zhang, X.A., Zhao, Y.T., Hoffmann, D.H.H., Yang, Z.H., Chen, X.M., Xu, Z.F., Li, F.L. & Xiao, G.Q. (2011). X-ray emission of Xe30+ ion beam impacting on Au target. Laser Part. Beams 29, 265268.
Ziegler, J.F., Biersack, J.P. & Littmark, U. (2003). The stopping and range of ions in solids.
Zwicknagel, G. (2002). Nonlinear energy loss of heavy ions in plasma. Nucl. Instr. Meth. B 197, 2238.
Zwicknagel, G., Toepffer, C. & Reinhard, P.-G. (1999). Stopping of heavy ions in plasmas at strong coupling. Phys. Rep. 309, 117208.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed