Skip to main content Accessibility help

Time-of-flight spectra for mapping of charge density of ions produced by laser

  • J. Krása (a1), P. Parys (a2), L. Velardi (a3) (a4), A. Velyhan (a1), L. Ryć (a2), D. Delle Side (a3) (a4) and V. Nassisi (a3) (a4)...


A space-resolved charge density of ions is derived from a time-resolved current of ions emitted from laser-produced plasma and expanded into the vacuum along collision-free and field-free paths. This derivation is based on a similarity relationship for ion currents with “frozen” charges observed at different distances from the target. This relationship makes it possible to determine a map of ion charge density at selected times after the laser plasma interaction from signals of time-of-flight detectors positioned at a certain distance from the target around a target-surface normal. In this work, we present maps of the charge density of ions emitted from Cu and polyethylene plasmas. The mapping demonstrates that bursts of ions are emitted at various ejection angles ϕn with respect to the target-surface normal. There are two basic directions ϕ1 and ϕ2, one belonging to the fastest ions, i.e., protons and carbon ions, and the other one to the slowest ions being a part of each plasma plume.


Corresponding author

Address correspondence and reprint requests to: J. Krása, Institute of Physics, ASCR, v.v.i.Na Slovance 2, 182 21 Praha 8, Czech Republic. E-mail:


Hide All
Dubenkov, V., Sharkov, B., Golubev, A., Shumshurov, A., Shamaev, O., Roudskoy, I., Streltsov, A., Satov, Y., Makarov, K., Smakovsky, Y., Hoffmann, D., Laux, W., Müller, R.W., Spädtke, P., Stöckl, C., Wolf, B. & Jacoby, J. (1996). Acceleration of Ta10+ ions produced by laser ion source in RFQ MAXILAC, Laser Part. Beams 14, 385392.
Haseroth, H. & Hora, H. (1996). Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources, Laser Part. Beams 14, 393438.
Kelly, R. & Dreyfus, R.W. (1988). On the effect of Knudsen-layer formation on studies of vaporization, sputtering, and desorption. Surf. Sci. 198, 263276.
Krása, J., Láska, L., Rohlena, K., Pfeifer, M., Skála, J., Králiková, B., Straka, P., Woryna, E. & Wolowski, J. (1999). The effect of laser-produced plasma expansion on the ion population. Appl. Phys. Lett. 75, 25392541.
Krása, J., Velyhan, A., Jungwirth, K., Krouský, E., Láska, L., Rohlena, K., Pfeifer, M. & Ullschmied, J. (2009). Repetitive outbursts of fast carbon and fluorine ions from sub-nanosecond laser-produced plasma. Laser Part. Beams 27, 171178.
Krása, J., Lorusso, A., Nassisi, V., Velardi, L. & Velyhan, A. (2011). Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation. Laser Part. Beams 29, 113119.
Krása, J. (2013). Gaussian energy distribution of fast ions emitted by laser-produced plasmas. Appl. Surf. Sci. 272, 4549.
Lorusso, A., Krása, J., Rohlena, K., Nassisi, V., Belloni, F. & Doria, D. (2005). Charge losses in expanding plasma created by an XeCl laser. Appl. Phys. Lett. 86, 081501.
Miotello, A. & Kelly, R. (1999). On the origin of the different velocity peaks of particles sputtered from surfaces by laser pulses or charged-particle beams. Appl. Surf. Sci. 138139, 44–51.
Roudskoy, I.V. (1996). General features of highly charged ion generation in laser-produced plasmas. Laser Part. Beams 14, 369384.
Thum, A., Rupp, A. & Rohr, K. (1994). Two-component structure in the angular emission of a laser-produced Ta plasma. J. Phys. D: Appl. Phys. 27, 17911794.
Thum-Jäger, A. & Rohr, K. (1999). Angular emission distributions of neutrals and ions in laser ablated particle beams. J. Phys. D: Appl. Phys. 32, 28272831.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed