Skip to main content Accessibility help
×
Home

THz radiation by amplitude-modulated self-focused Gaussian laser beam in ripple density plasma

  • Subodh Kumar (a1), Ram Kishor Singh (a1), Monika Singh (a1) and R. P. Sharma (a1)

Abstract

The effect of self-focusing and defocusing on terahertz (THz) generation by amplitude-modulated Gaussian laser beam in rippled density plasma is investigated. A stronger transient transverse current is generated by transverse component of ponderomotive force exerted by laser on electrons that drives radiation at the modulation frequency (which is chosen to be in the THz domain) because of the variation in intensity in the direction transverse to the laser propagation. Numerical simulations indicate the enhancement of THz yield by many folds due to self-focusing of laser beam in comparison with that without self-focusing. The transient focusing of laser beam and its effect on the generated THz amplitude has also been studied.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      THz radiation by amplitude-modulated self-focused Gaussian laser beam in ripple density plasma
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      THz radiation by amplitude-modulated self-focused Gaussian laser beam in ripple density plasma
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      THz radiation by amplitude-modulated self-focused Gaussian laser beam in ripple density plasma
      Available formats
      ×

Copyright

Corresponding author

Address correspondence and reprint requests to: Ram Kishor Singh, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India. E-mail: ram007kishor@gmail.com

References

Hide All
Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a non linear mediaum. Sov. Phys. – Usp. 10, 609636.
Alekseev, K.N., Gorkunov, M.V., Demarina, N.V., Hyart, T., Alexeeva, N.V. & sorokov, A.V. (2006). Suppressed absolute negative conductance and generation of high frequency radiation in semiconductor superlattices. Europhys. Lett. 73, 934.
Brucherseifer, M., Nagel, M., Bolivar, P.H., Kurz, H., Bosserhoff, A. & Büttner, R. (2000). Label-free probing of the binding state of DNA by time domain terahertz sensing, Appl. Phys. Lett. 77, 40494051.
Chen, Z.-Yu. (2013). High field terahertz pulse generation from plasma wake field driven by tailored laser pulses. Appl. Phys. Lett. 102, 241104.
Chizhov, P.A., Volkov, R.V., Bukin, V.V., Ushakov, A.A., Garnov, S.V. & Salvel'ev, A.B. (2013). Generation of terahertz radiation by focusing femtosecond bichromatic laser pulses in a gas or plasma. Quantum Electron. 43, 347349.
Clery, D. (2002). Terahertz on a chip. Science 297, 763.
Davis, A.G., Linfield, E.H. & Johnston, M.B. (2002). The development of terahertz sources and their applications. Phys. Med. Biol. 47, 36793689.
Federici, J.F., Huang, S.F., Gary, D., Barat, R., Oliveira, F. & Zimdars, D. (2005). Terahertz imaging and sensing for security applications-explosives, weapons and drugs. Semicond. Sci. Technol. 20, S266S280.
Gildenburg, V.B. & Vvedenskii, N.V. (2007). Optical-to-THz wave conversion via excitation of plasma oscillations in the tunnelling-ionization process. Phys. Rev. Lett. 98, 245002.
Hafizi, B., Sprangle, P. & Serafim, P. (1992). Nonlinear analysis of a grating free-electron laser. Phys. Rev. A 45, 88468853.
Hamster, H., Sullivan, A., Gordon, S. & Falcon, R.W. (1993). Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 27252728.
Han, P.Y., Cho, C.G. & Zhang, X.C. (2002). Time-domain transillumination of biological tissues with terahertz pulses. Opt. Lett. 25, 242244.
Hashimshony, D., Zigler, A. & Papadopoulos, K. (1999). Generation of tunable far-infrared radiation by the interaction of a superluminous ionizing fron with an electrically biased photoconductor. Appl. Phys. Lett. 74, 16691671.
Hazra, S., Chini, T.K., Sanyal, M.K., Grenzer, J. & Pietsch, U. (2004). Ripple structure of crystalline layers in ion- beam-induced Si wafers. Phys. Rev. B 70, 121307 (R).
Hirata, A., Kosugi, T., Takahashi, H., Yamaguchi, R., Nakajima, F., Furuta, T., Ito, H., Sugahara, H., Sato, Y. & Nagatsuma, T. (2006). 120-GHz-band millimetre-wave photonic wireless link for 10-Gb/s data transmission. IEEE Trans. Microw. Theory Tech. 54, 19371944.
Houard, A., Liu, Y., Prade, B., Tikhonchuk, V.T. & Mysyrowicz, A. (2008). Strong enhancement of terhertz radiation from laser filaments in air by a static electric field. Phys. Rev. Lett. 100, 255006.
Jha, P., Sarochand, A., Mishra, P.K. (2011). Generation of wakefields and terahertz radiation in laser- magnetized plasma interaction. Europhys. Lett. 94, 15001.
Jiang, Z.P., Li, M. & Zhang, X.C. (2000). Dielectric constant measurement of thin films by differential time-domain spectroscopy. Appl. Phys. Lett. 76, 32213223.
Karpowicz, N., Zhong, H., Zhang, C., Lin, K.-I., Hwang, J.S., Xu, J.& Zhang, X.-C. (2005). Compact continuous- wave terahertz system for inspection applications. Appl. Phys. Lett. 86, 54105.
Kawase, K., Ogawa, Y., Watanabe, Y. & Inoue, H. (2003). Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11, 25492554.
Kemp, M.C., Baker, C. & Gregory, I. (2006). Standoff Detection of Suicide Bombers & Mobile Subjects. (Schubert, H. and Rimski, A.-K., Eds.), pp. 155169. Netherlands: Springer.
Krumbholz, N., Gerlach, K., Rutz, F., Koch, M., Piesiewicz, R., Kurner, T. & Mittleman, D. (2006). Omnidirectional terahertz mirrors: A key element for terahertz communication systems. Appl. Phys. Lett. 88, 202905.
Kukushkin, V.A. (2008). Generation of THz radiation in semiconductors with cyclotron heating of heavy holes. Europhys. Lett. 84, 60002.
Ladouceur, H.D., Baronnavski, A.P., Lohrmann, D., Grounds, P.W. & Girardi, P.G. (2001). Electrical conductivity of a femtosecond laser generated plasma channel in air. Opt. Commun. 189, 107111.
Layer, B.D., York, A., Antonson, T.M., Varma, S., Chen, Y.H., Leng, Y. & Milchberg, H.M. (2007). Ultrahigh-intensity optical slow wave structure. Phys. Rev. Lett. 99, 035001.
Leemans, W.P., Tilborg, J.V., Faure, J., Geddes, C.G.R., Toth, C., Schroeder, C.B., Esarey, E., Fubiani, G. & Dugan, G. (2004). Terahertz radiation from laser accelerated electron bunches. Phys. Plasmas 11, 28992906.
Liu, C.S. & Tripathi, V.K. (2008). The harmonic generation of a short pulse laser in a plasma density ripple created by a machining beam. Phys. Plasmas 15, 023106.
Ma, G.H., Tang, S.H., Kitaeva, G.K. & Naumova, I.I. (2006). THz generation in Czocharlski- grown periodically poled Mg: Y: LiNbO3 by optical rectification. J. Opt. Soc. Am. B 23, 8189.
Muggli, P., Liou, R., Lai, C.H., Hoffman, J., Katsouleas, T.C. & Joshi, C. (1998). Generation of microwave pulses from the static electric field of a capacitor array by an underdense, relativistic ionization front. Phys. Plasmas 5, 21122119.
Oh, T.I., You, Y.S., Jhajj, N., Rosenthal, E.W., Milchberg, H.M. & Kim, K.Y. (2013). Intense terahertz generation in two-color laser filamentation: Energy scaling with terawatt laser systems. New J. Phys. 15, 075002.
Pai, C.-H., Huang, S.-Y., Kuo, C.-C., Lin, M.-W., Wang, J., Chen, S.-Y., Lee, C.-H. & Lin, J.-Y. (2005). Fabrication of spatial transient –density structures as high field plasma photonic devices. Phys. Plasmas 12, 070707.
Sharma, R.P., Monika, A., Sharma, P., Chauhan, P. & Ji, A. (2010). Interaction of high power laser beam with magnetized plasma and THz generation. Laser Part. Beams 28, 531537.
Shen, Y.C., Lo, T., Taday, P.F., Cole, B.E., Tribe, W.R. & Kemp, M.C. (2005). Detection and identification of explosive using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 24116.
Sheng, Z.-M., Mima, K., Zhang, J. & Sanuki, H. (2005). Emission of electromagnetic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett. 94, 095003.
Singh, M., Singh, R.K. & Sharma, R.P. (2013). THz generation by cosh-Gaussian lasers in a rippled density plasma. Europhys. Lett. 104, 35002.
Singh, R., Sharma, A.K. & Tripathi, V.K. (2010). Relativistic self-distortion of a laser pulse and poderomotive acceleration of electrons in an axially inhomogeneous plasma. Laser Part. Beams 28, 299305.
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self Focussing of Laser Beams in Dielectrics, Plasmas and Semiconductors. New Delhi: Tata Mcgraw-Hill.
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self-focusing of laser beams in plasmas and semiconductors. Prog. Opt., 13, 171265.
Sodha, M.S., Salimullah, Md. & Sharma, R.P. (1980). Generation of ion-acoustic pulse by two electromagnetic pulses at difference frequencies in a collisionless plasma. Phys. Rev. A 21, 17081716.
Sodha, M.S., Sinha, S.K. & Sharma, R.P. (1979). The self-focusing of laser beams in magnetoplasmas: The moment theory approach. J. Phys. D: Appl. Phys. 12, 1079.
Tonouchi, M. (2007). Cutting – edge terahertz technology. Nat. Photonics 1, 97105.
Tripathi, D., Bhasin, L., Uma, R. & Tripathi, V.K. (2010). Terahertz generation by an amplitude-modulated Gaussian laser beam in a rippled density plasma. Phys. Scr. 82, 035504.
Wallace, V.P., Anthony, J.F., Pickwell, E., Pye, R.J., Taday, P.F., Flanagan, N. & Thomas, H. (2006). Terahertz pulsed spectroscopy of human basal cell carcinoma. Appl. Spectrosc. 60, 11271133.
Wang, W.M., Kawata, S., Sheng, Z.-M., Li, Y.-T. & Zhang, J. (2011). Towards gigawatt terahertz emission by few-cycle laser pulses. Phys. Plasmas 18, 073108.
Wang, Z. (2001). Generation of terahertz radiation via nonlinear optical methods. IEEE Trans. Geosci. Remote Sens. 1, 15.
Waters, J.W., Froidevaux, L., Harwood, R.S., Jarnot, R.F., Pickett, H.M., Read, W.G., Siegel, P.H., Cofield, R.E., Filipiak, M.J., Flower, D.A., Holden, J.R., Lau, G.K., Livesey, N.J., Manney, G.L., Pumphrey, H.C., Santee, M.L., Wu, D.L., Cuddy, D.T., Lay, R.R., Loo, M.S., Perun, V.S., Schwartz, M.J., Stek, P.C., Thurstans, R.P., Boyles, M.A., Chandra, K.M., Chavez, M.C., Chen, G.-S., Chudasama, B.V., Dodge, R., Fuller, R.A., Girard, M.A., Jiang, J.H., Jiang, Y., Knosp, B.W., Labelle, R.C., Lam, J.C., Lee, K.A., Miller, D., Oswald, J.E., Patel, N.C., Pukala, D.M., Quintero, O., Scaff, D.M., Snyder, W.V., Tope, M.C., Wagner, P.A. & Walch, M.J. (2006). The Earth Observing System Microwave Limb Sounder (EOS MLS). IEEE Trans. Geosci. Remote Sens. 44, 10751092.
Wu, H.C., Meyer-Ter-Vehn, J., Ruhland, H. & Sheng, Z.-M. (2011). Terahertz radiation from a laser plasma filament. Phys. Rev. E 83, 036407.
Wu, H.C., Sheng, Z.-M., Dong, Q.L., Xu, H. & Zhang, J. (2007). Powerful terahertz emission from laser wakefields in inhomogeneous magnetized plasma. Phys. Rev. E 75, 016407–7.
Xia, X. (2014). Nonlinear structure of electromagnetic field, electron temperature and electron density in interaction of relativistic laser and plasma with density ripple. Laser Part. Beams 32, 591597.
Xia, X. & Xu, B. (2013). The anomalous self-distortion of Gaussian laser beams in a periodic rippled plasma. Opt. Laser Technol. 48, 241245.
Xu, W. (1997). Self consistent electronic subband structure in terahertz-driven two-dimensional electron gases. Europhys. Lett. 40, 411416.
Ying, H., Huang, P., Guo, C., Wang, X. & Zhang, C. (2006). Terahertz spectroscopic investigations of explosives. Phys. Lett. A 359, 728732.
Yugami, N., Higashiguchi, T., Gao, H., Sakai, S., Takahashi, K., Ito, H., Nishida, Y. & Katsouleas, T. (2002). Experimental observation of radiation from Cherenkov wakes in magnetized plasma. Phys. Rev. Lett. 89, 065003065006.
Zhong, H., Jingzhou, X., Xie, Y., Yuan, T., Reightler, R., Madaras, E. & Zhang, X.-C. (2005). Non destructive defect identification with terahertz time of flight tomography. IEEE J. Sens. 5, 203208.

Keywords

THz radiation by amplitude-modulated self-focused Gaussian laser beam in ripple density plasma

  • Subodh Kumar (a1), Ram Kishor Singh (a1), Monika Singh (a1) and R. P. Sharma (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed